
AD-A116 119

Optimized Breech Location in the Harry Diamond Laboratories 4-Inch Gas Gun

Herbert D. Curchack

U.S. Army Electronics Research and Development Command Harry Diamond Laboratories

Adelphi, MD 20783

. Approved for public release; distribution unlimited.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

- Citation of manufacturers' or trade names does not constitute an official indorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
HDL-TR-1983		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Optimized Breech Location in the Harry D	iamand Laboratorias	Technical Report
4-Inch Gas Gun	iamond Laboratones	6. PERFORMING ORG. REPORT NUMBER
I Morrisad Gari		The state of the s
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(8)
Herbert D. Curchack		
9. PERFORMING ORGANIZATION NAME AND ADDRES	S	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Harry Diamond Laboratories		AREA & WORK UNIT NUMBERS
2800 Powder Mill Road		
Adelphi, MD 20783		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
U.S. Army Materiel Development and Readiness Command		April 1982
Alexandria, VA 22333		54
14. MONITORING AGENCY NAME & ADDRESS(II differe	ent from Controlling Office)	1S. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15- PEG: ASSIELS ATTION / POWER PARKET
		ISa. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public	release; distribution u	ınlimited.
17. DISTRIBUTION STATEMENT (of the ebstract entered	d in Block 20, if different from	m Report)
		Í
18. SUPPLEMENTARY NOTES		
10. SUPPLEMENTANT NOTES		
HDL Proj: 898CH4		
19. KEY WORDS (Continue on reverse side if necessary a	and Identify by block number	
13. KEY WORDS (Continue on reverse side if necessary a	and raentriy by block number)	
Gas gun Air gun Kent		
Helium gun Pidduck Ballis	tic	
Laund	cher	
20. ABSTRACT (Continue on reverse elds if necessary as	411-44- to track	
A theoretical and experimental study w		where a fixed length, constant
diameter tube should be divided so that wh	nen one portion of the t	tube was used as a gun barrel
and the remaining portion was used as a dri	iver, the maximum proje	ectile muzzle velocity would be
obtained for a particular driver gas and initial projectile acceleration. Studies were made of		
several gas gun configurations, of 4-in. (10-		
zle velocities greater than 500 ft/s (150 m		
theory for very low Mach numbers; the cor initial accelerations; and the Pidduck-Kent		
miliai accelerations, and the Floudck-Kent	t theory for other regin	nes. Experimental results and

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
•
20. ABSTRACT (Cont'd)
20. Abottition (com a)
theoretical predictions are compared for several gun divisions, helium and nitrogen drivers, and initial accelerations from 200 to 5000 g. For improved gun utilization, gun configurations are suggested to reduce exit gas pressure, to reduce the quantity of driver gas required, and to ease operation and improve (statistical) utilization of the gun without unduly affecting muzzle velocity. Although the results obtained are specific to the Harry Diamond Laboratories 4-in. gas gun, computer programs are included that may be applied to other gun geometries.
¥.
·

CONTENTS

		Page
1.	1. BACKGROUND	5
2.	2. CONSTRUCTION	6
3.		
4.		
5.		
	 5.1 Isentropic Expansion	
6.	EXPERIMENTAL RESULTS	20
	6.1 Procedure	20
7.	. DISCUSSION	24
8.		
	CKNOWLEDGEMENT	
	OMENCLATURE	
	PPENDIX A.—COMPUTER PROGRAMS	
	ISTRIBUTION	
	FIGURES	
1. 2. 3. 4. 5. 6. 7.	Muzzle section of 4-in. gun. One-atmosphere configuration breech of 4-in. gun. Closure section. Projectile restraining section.	

FIGURES (Cont'd)

		Page
8.	Pidduck-Kent theory, helium, 200 to 3000 g	12
9.	Pidduck-Kent theory, nitrogen, 200 to 3000 g	12
10.	Pidduck-Kent theory, helium, 3000 to 15,000 g	13
11.	Pidduck-Kent theory, nitrogen, 3000 to 15,000 g	14
12.	Infinite driver theory, helium, 200 to 3000 g	15
13.	Infinite driver theory, nitrogen, 200 to 3000 g	16
14.	Infinite driver theory, helium, 3000 to 15,000 g	16
15.	Infinite driver theory, nitrogen, 3000 to 15,000 g	17
16.	Pidduck-Kent and infinite driver theories combined, helium, 200 to 3000 g	18
17.	Pidduck-Kent and infinite driver theories combined, nitrogen, 200 to 3000 g	19
18.	Pidduck-Kent and infinite driver theories combined, helium, 3000 to 15,000 g	19
19.	Pidduck-Kent and infinite driver theories combined, nitrogen, 3000 to 15,000 g	20
20.	Typical projectiles used in study	21
21.	Data and theories, nitrogen, relative pin position of 0.117	22
22.	Data and theories, nitrogen, relative pin position of 0.372	23
23.	Data and theories, helium, relative pin position of 0.372	23
24.	Combined data, nitrogen and helium, relative pin positions of 0.117 and 0.372	24
25.	Lagrange and Pidduck-Kent theories, helium, relative pin positions of 0.117, 0.244, and 0.372	25
26.	Helium (Lagrange theory)	26
20. 27.	Nitrogen (Lagrange theory)	26
27. 28.	Fraction of energy gained by projectile from driver gas (Lagrange theory)	27
	TABLES	
1.	Features of Optimized Lagrange Gun	11
2.	The state of the Date of the Continue With Hollium Driver	28

1. BACKGROUND

Gas guns are used at the Harry Diamond Laboratories (HDL) to accelerate ordnance items to velocities typical of mortar, recoilless rifles, and artillery projectiles, that is, 400 to 4000 ft/s (120 to 1200 m/s). Test considerations often dictate achievement of the required velocity with the lowest acceleration (g) force exerted on the projectile while in the gun. This dictum necessitates the use of low driving pressures, and therefore long guns are needed to achieve the required velocities. These guns are installed in special purpose laboratory space, and the maximum gun length is limited by the dimensions of the building. The characteristics of the guns and the governing theories must be known to configure the guns so as to maximize the projectile velocity for the applied acceleration.

The gun used most often at HDL has a 4-in. bore and is the subject of this experimental and theoretical investigation. A large portion of the gun is located in a 5-ft (1.5-m)-high tunnel that runs the width of the building that it occupies. Several meters of each end of the gun extend into a "breech" room and a "muzzle" room. This gun can be configured in two ways (fig. 1). For many tests, velocities of 400 to 800 ft/s (120 to 240 m/s) are adequate. These are readily achievable in a 1-atm configuration. In the 1-atm gun, a pin restrained projectile seals one end of a barrel, a diaphragm seals the other end, and the barrel is evacuated (fig. 1a). Removal of the pin per-

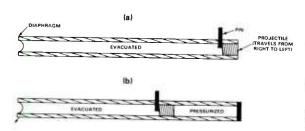


Figure 1. Four-inch gun: (a) one-atmosphere and (b) pressurized configurations.

mits atmospheric pressure to accelerate the projectile down the barrel and through the diaphragm. When tests require higher velocities, a pressurized driver is required. The gun contains provision for a second pin downstream from the 1-atm pin. The breech end of the gun is sealed, and the section between this end of the gun and the projectile can be pressurized (fig. 1b). This configuration uses part of the gun length as driver and therefore shortens the length of the gun available as barrel.

Consider the four pressure-driven gun configurations shown in figure 2. In the uppermost gun (fig. 2a), the driver gas has no volume, and therefore the projectile can achieve no velocity. The projectile moves with increasing speed as the pin is located farther downstream (fig. 2b). Further movement of the pin (fig. 2c) shortens the barrel length (the distance over which the projectile accelerates) and thus offsets the gain in chamber volume. Finally, as the pin location nears the muzzle end of the gun (fig. 2d), the projectile has little distance over which to accelerate, and the muzzle velocity approaches zero.

The problem is to locate the pin at the position that, for any specified velocity, requires the lowest gas pressure. This is equivalently stated as the pin position that maximizes the projectile muzzle velocity for a given gas pressure. There are a limited number of pin

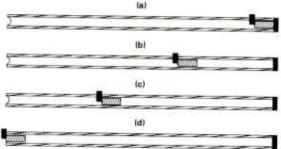


Figure 2. Four locations for release pin of constant length gun: (a) at breech, (b) near breech, (c) near muzzle, and (d) at muzzle.

positions (breech locations) in the 4-in. gun because of the way that the gun is constructed. This report shows that no one pin position is optimal for all velocities and, because it is impractical to relocate the breech for different tests, the solution to the problem becomes somewhat subjective.

2. CONSTRUCTION

The gun used in this investigation is constructed from eight 12-ft (4-m) lengths of 90-mm gun barrels. The barrels have been bored to a 4-in. (10-cm) inside diameter (i.d.), turned down to a 6-in. (15-cm) outside diameter (o.d.), and flanged. The barrel sections are always evacuated, even when a pressure driver is used. The joints are sealed with copper gaskets. The muzzle section of the gun (fig. 3) attaches to the last barrel and contains the fittings for the vacuum connections. This section has a large internal toroidal reservoir to accept any gas that is driven ahead of the proiectile and thereby to minimize the pressure rise ahead of the projectile. This section contains also the muzzle seal, which is a 0.002-in.

Figure 3. Muzzle section of 4-in, gun.

 $(50-\mu m)$ Mylar sheet clamped in a door by two screw latches. The Mylar is located on a roller above the door, and a new section of the sheet is pulled down and reclamped after each shot.

The release pin assembly used in the 1-atm configuration (fig. 4) attaches to the entrance of the first barrel. It is a short gun extension with an internal circumferential 0-ring groove to seal to the girth of the projectile and a pneumatically operated, electrically controlled pin to restrain the projectile. Also visible is a bac' mate, which acts as a backstop to capture the projectile if it is propelled out of the rear of the gun in the event that the muzzle diaphragm is accidentally ruptured. To the left of the release pin assembly is a side access port, which remains covered in the 1-atm configuration and is used only in the pressurized configuration.

In the pressurized configuration, the breech end of the gun is sealed by a closure section located in the side access port in the first barrel section (fig. 5). The closure section contains pressurization and vacuum ports.

The projectile restraining section used in the pressurized configuration (fig. 6) is 1 ft (30 cm) long; has a side access panel 8 in. long; and contains a pnuematically operated, electrically controlled pin and the required 0-ring. The projectile restraining section can be placed between any two sections of the gun and therefore can be placed at one of seven possible locations along the barrel. When the 1-atm configuration is used, the projectile restraining section 0-ring is removed, and the pin is withdrawn to allow free projectile passage through the projectile restraining section.

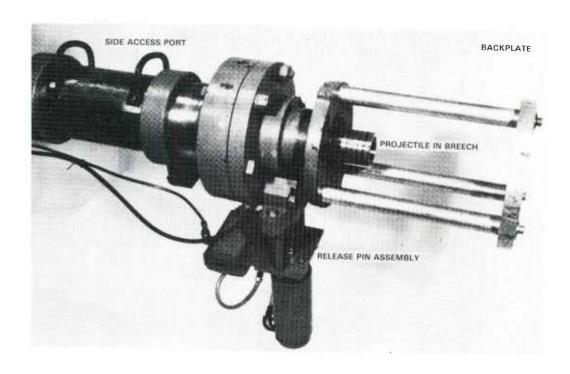


Figure 4. One-atmosphere configuration breech of 4-in. gun.

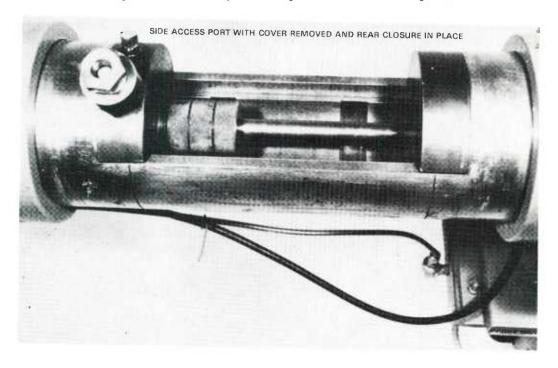
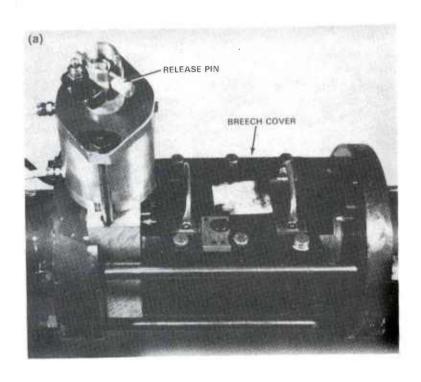



Figure 5. Closure section.

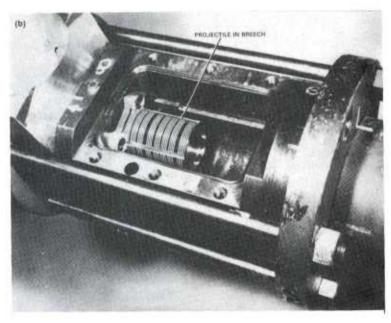


Figure 6. Projectile restraining section: (a) open and (b) closed.

The drawing in figure 7 shows the 4-in. gun with the projectile restraining section mounted between the first two barrel sections. This assembly provides easy access to the projectile restraining section because it is located in the breech room. Currently, the projectile restraining section is mounted between barrel sections 3 and 4 and is located in the gun tunnel. This location is somewhat inconvenient because of the low ceiling.

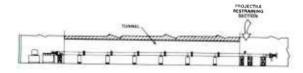


Figure 7. Isometric side view of 4-in. gun.

3. VELOCITY MEASURING INSTRUMEN-TATION

Muzzle speed is obtained by measurement of the time of flight between two "light screens" located 12.00 in. (30.48 cm) apart near the end of the last gun barrel section. All the experimental projectile muzzle velocity data presented below are computed by using these devices. For theoretical purposes, the end of the gun is assumed to be halfway between the two light screens.

Each light screen consists of a light source operated by direct current (dc), a photodetector, and an amplifier circuit. The source and the detector face each other along a diameter of the gun tube. When the projectile interrupts the light falling on the detector, a trigger signal is generated.

The light source consists of an incandescent lamp mounted behind an achromatic lens, which images the lamp filament about 200 mm in front of the lens. A lens in the detector assembly refocuses the light onto a small piece of frosted glass positioned immediately in front of the photodetector. With this arrangement, the photodetector amplifier output jumps from 2 to 18 V when the light beam is inter-

rupted. The rise time of each detector and amplifier combination is 15 μ s, with less than 1- μ s difference between the two light screens. Therefore, time interval measurements are accurate to within 1 μ s; positioning of the light screens is accurate to within 0.01 in. (0.25 cm); hence, the accuracy of the velocity measurements is approximately 0.4 ft/s (12 cm/s) at 400 ft/s (120 m/s) and about 6 ft/s (1.8 m/s) at 2500 ft/s (750 m/s).

Previous setups with finer beams and therefore finer distance resolution proved to be sensitive to debris or vibrations or both and occasionally triggered early. The present arrangement has proven to be highly reliable.

Streak photography, which is used to photograph the projectile shortly after it leaves the muzzle, provides a further check on muzzle velocity. The streak method (used for muzzle velocities less than 1500 ft/s or 300 m/s) agrees with the above method to better than 1 percent.

4. OTHER MEASUREMENTS

Other measurements that enter into the calculation of the initial acceleration are projectile weight, gas pressure, gun length, and gun diameter. By far, the least accurate of these measurements is the gas pressure, which is good to only 5 percent; hence, measurements of the initial acceleration are good to about 5 percent.

Certain gas parameters are used in the theory. The gas properties assumed are the properties of a pure gas at 20 C. The room (driver) temperature was constant to about 3 C, which has little effect on these properties. For nitrogen experiments, no special care was taken to assure driver gas purity. It was assumed that the air initially in the driver section was sufficiently close in properties to nitrogen so as not to influence the results. For helium shots, a purging technique was implemented

consisting of three series of evacuation of the driver section to less than 5 psia (34.5 kPa absolute) followed by helium pressurizations to 50 psig (345 kPa gauge) (except for the final pressurization, which was to the required firing pressure).

5. THEORY

The problem of optimization of pin position in the 4-in. gun, along with a more general problem that includes diameter changes in the driver section, has been analyzed by Seigel.¹ Seigel's report contains an analysis of the four active HDL gas guns and two future guns. The aim of his investigation is to configure the guns so as to maximize the projectile velocity for a specified maximum projectile acceleration. The aim of HDL's investigation is stated in section 1.

5.1 Isentropic Expansion

It is instructive to start the theoretical discussion with a problem that is analytically tractable, adds insight to the results, and is shown to be valid for certain test conditions. Isentropic expansion of a driver gas² yields an approximate prediction of gun muzzle velocity (Lagrange approximation) when the gas sound speed is much larger than the projectile velocity (U), that is, small Mach number. It is assumed that the driver section diameter is the same as the barrel diameter.

$$U^{2} = K [NZ (1 - Z^{2/N})/2] , (1)$$

where

$$K = 2APL/M$$
 , (1a)

$$Z = X/L , (1b)$$

N is the degrees of freedom of the driver gas.

A is the cross-sectional area of the gun barrel, P is the initial gas pressure in the driver reservoir, L is the total gun length, M is the projectile mass, Z is the relative position of the pin measured from the breech end of the barrel, and X is the length of the driver reservoir.

The square root of K is the velocity (U_{total}) that would be achieved in a constant acceleration gun of the total gun length.

$$U_{\text{total}} = K^{1/2} . \tag{1c}$$

The quantity in brackets in equation (1) is always less than 1 and therefore represents a decrease from U_{total} .

Since the ratio of barrel length (Y) to total gun length is 1 - Z,

$$U_{\text{barrel}} = U_{\text{total}} (1 - Z)^{1/2}$$
 (1d)

 U_{barrel} is the velocity that would be attained if the acceleration were constant over the barrel length.

The optimum pin position $(Z_{\rm opt})$ is found by differentiating U with respect to Z and setting the result to zero. These actions result in

$$Z_{\text{opt}} = (1 + 2/N)^{-N/2}$$
, (2)

$$U_{\text{max}} = U_{\text{total}} [Z_{\text{opt}} / (1 + 2/N)]^{1/2} , \qquad (3)$$

$$U_{\text{max}} = U_{\text{barrel}} [N/(N+2)]^{1/2} \times [Z_{\text{opt}}/(1-Z_{\text{opt}})]^{1/2} . \tag{4}$$

Table 1 lists results from equations (2) to (4). Note these:

a. The greater the degrees of freedom of the gas, the shorter the driver and the higher the expected velocity.

¹Arnold E. Seigel, Performance Calculations and Optimization of Gas Guns, Chevy Chase, MD, HDL-CR-81-723-1 (May 1981).

²J. Corner, Theory of the Interior Ballistics of Guns, John Wiley & Sons, New York (1950).

- b. When the pin is located about 40 percent of the way down the length of the gun barrel, we should expect about 55 percent of the velocity achievable if the entire gun length were available for constant acceleration.
- c. Velocity based on the actual barrel length indicates that the projectile can never achieve better than three-quarters of the constant acceleration velocity.

TABLE 1. FEATURES OF OPTIMIZED LAGRANGE GUN

N	Z _{opt}	U _{max} /U _{total}	U _{max} /U _{barrel}		
3	0.465	0.528	0.722		
5	0.431	0.555	0.736		
Infinite	0.368	0.606	0.763		

5.2 Computer Analyses

Theories that account for inertial effects of the gas were programmed in VAX-11 BASIC and are treated in the following sections. The programs are included in appendix A and are referred to as used in this paper. For ease of presentation, the results are in

graphical form. The results obtained, although sometimes presented as dimensionless numbers, are not generally applicable. Guns of different lengths yield different curves as functions of the same dimensionless numbers. Such curves can be obtained only by changing the initial conditions in the programs.

5.3 Pidduck-Kent Special Solution

An important analytic treatment is the Pidduck-Kent solution, which assumes that through a number of reflections between the rear of the driver and the projectile, the flow has reached a steady pressure profile, which decreases in amplitude with time. The equations governing this solution are included in the program PDQ and are not repeated here.

In the following graphs, projectile velocity is presented as a function of relative pin position, that is, driver section length per total gun length. The parameter is the initial acceleration, which is the same as the maximum acceleration. Figure 8 presents results for a helium driver. The initial acceleration is 200 g for the lowest curve and 3000 g for the highest curve, and intermediate curves are in 200-g increments. Figure 9 shows the same results for nitrogen.

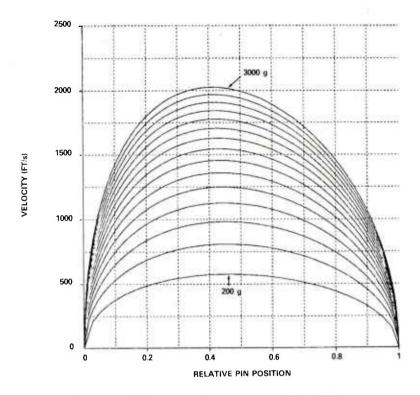


Figure 8. Pidduck-Kent theory, helium, 200 to 3000 g.

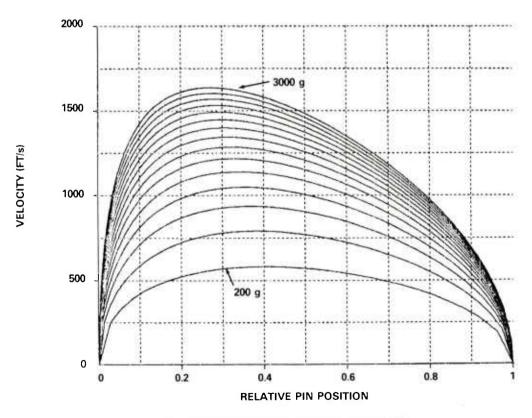


Figure 9. Pidduck-Kent theory, nitrogen, 200 to 3000 g.

Note that the relative pin position for the velocity peaks for the lowest curves in each figure, 0.467 and 0.417, fall near those predicted by the Lagrange theory in table 1. However, as the initial acceleration increases, the peaks shift to smaller values of relative pin position. The better agreement for the helium data is attributed to the assumption that a weightless gas, inherent in the Lagrange theory (which postulates infinite sound speed), is better satisfied; the Mach number for the 200-g helium case is only 0.15, but for the nitrogen case it is up to 0.5. The lowest curves (200 g) also predict velocities of 576 and 582 ft/s (173 and 175 m/s) for helium and nitrogen,

that is, higher for nitrogen! However, as the initial acceleration increases, the higher sound speed of helium becomes of significance, and higher projectile velocities are obtained with the monatomic gas.

Figures 10 and 11 present data for initial accelerations of 3000 to 15,000 g in steps of 2000 g. Although accelerations of more than 3000 g are rarely anticipated for the particular application of this investigation,³ these results are included for completeness.

³Herbert D. Curchack, An Artillery Simulator for Fuze Evaluation, Harry Diamond Laboratories HDL-TR-1330 (November 1966).

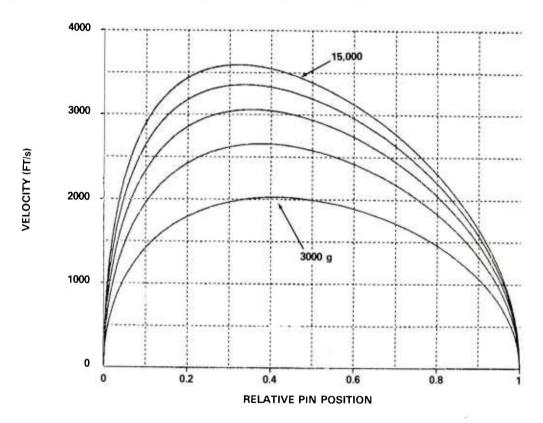


Figure 10. Pidduck-Kent theory, helium, 3000 to 15,000 g.

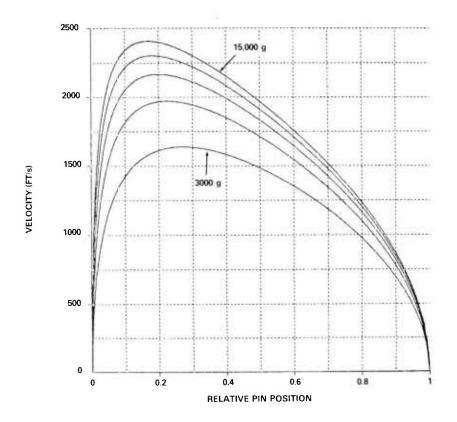


Figure 11. Pidduck-Kent theory, nitrogen, 3000 to 15,000 g.

5.4 Constant Diameter, Infinite Length Driver Theory

If the driver is assumed to be the same diameter as the barrel and infinite in length, then program CONDIA is applicable. Although the governing equation can be deduced from the program, it is camouflaged by changes in notation and is repeated here.

$$PAY/Ma^{2} = [u - N/(N + 1)] (1 - u/N)^{(N+1)}$$

$$+ N/(N + 1),$$
(5)

where a is the initial sound speed in the driver reservoir and u is the projectile Mach number based on initial sound speed. This theory applies where the driver "appears" infinite. That is, when the first expansion wave (of an expansion fan) leaves the projectile at the onset of motion, the wave is reflected from the rear of the gun, but does not overtake the projectile before the projectile exits from the muzzle. The resultant curves are plotted in figures 12 to 15 for helium and nitrogen and for the lower and higher initial acceleration ranges.

The diamonds on the curves represent the projectile starting location for which the first reflected wave overtakes the projectile just as it leaves the muzzle. They were obtained from program CATCH. The assumption of infinite length driver is valid for all points to the right of the diamonds, and the validity decreases to the left.

These curves do not have theoretical maxima as in the Pidduck-Kent and Lagrange

⁴Arnold E. Seigel, The Theory of High Speed Guns, Naval Ordnance Laboratory, White Oak, MD, AGARDograph 91 (May 1965), eq (12.2).

cases. The optimum pin location from these curves is at a relative pin position of zero (Y = L), which is in a region in which the theory does not hold. (The driver is of zero length, not infinite length.) Therefore, a determination of optimum pin position from these curves is not possible. However, the first waves that over-

take the projectile are weak expańsion waves, and theoretical results that include effects of these waves would follow infinite driver results for some distance to the left of the diamond. Based on this consideration, the curves would continue to rise for some distance to the left of the diamonds, and optimum relative pin position would be to the left of the diamonds.

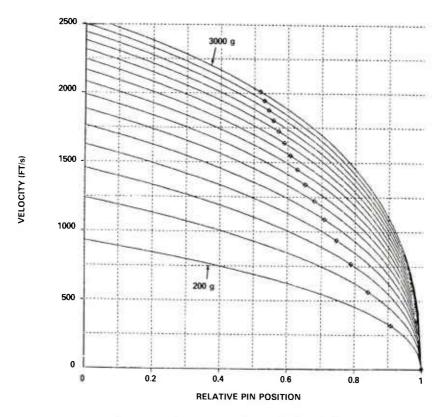


Figure 12. Infinite driver theory, helium, 200 to 3000 g.

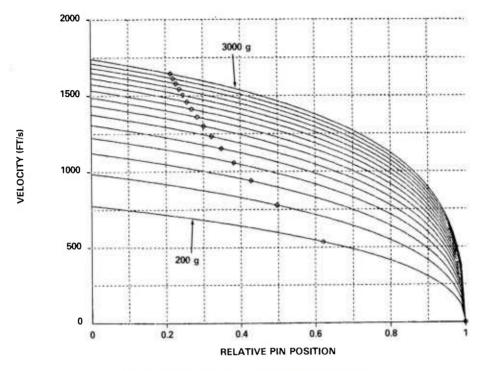


Figure 13. Infinite driver theory, nitrogen, 200 to 3000 g.

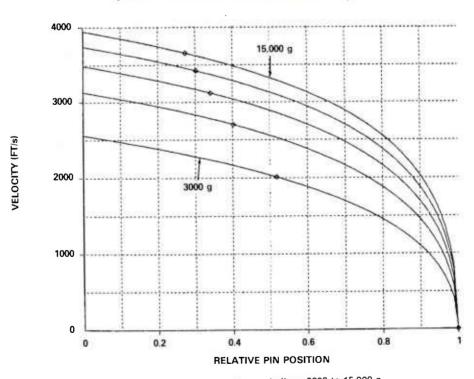


Figure 14. Infinite driver theory, helium, 3000 to 15,000 g.

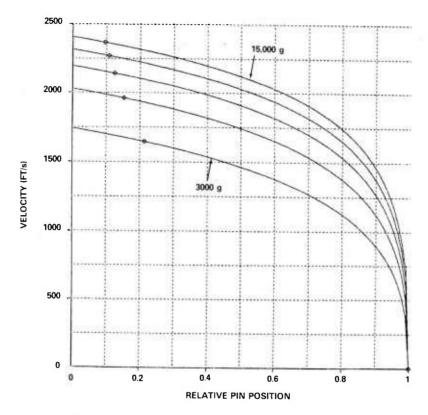


Figure 15. Infinite driver theory, nitrogen, 3000 to 15,000 g.

5.5 Combined Pidduck-Kent and Infinite Driver Theories

The results presented in figures 16 to 19 were obtained from program CDPK, which, combines the results of Pidduck-Kent for small values of relative pin position with infinite driver results for large values. These were obtained by comparing the predicted velocities from the two theories starting at a relative pin position of zero and using the Pidduck-Kent result as output so long as it predicted a velocity lower than the infinite driver results. Once the infinite driver theory predicted lower velocity, infinite driver results were used for the remainder of the run, even though for higher values of relative pin position Pidduck-Kent again predicted lower muzzle velocity. Infinite driver results were used because infinite driver theory is more appropriate in this region. The

point at which the two theories intersect is marked with a plus sign. The diamond represents the projectile starting location for which the first reflected wave overtakes the projectile just as it leaves the muzzle.

Generally, for low initial accelerations, the transition from one theory to the other is smooth, and the first reflection points are on or very close to the Pidduck-Kent portion of the curve. For higher accelerations, the transition becomes more abrupt, and the first reflection points lie above the Pidduck-Kent curves. Since infinite driver theory (sect. 5.4) implies that the maximum is to the left of the diamond, the conclusion drawn from these figures is that Pidduck-Kent underestimates muzzle velocity in the transition region, that is, where the first reflection overtakes the projectile near the muzzle. Since Pidduck-Kent

assumes a gas pressure distribution that is achievable only after several reflections and infinite driver assumes no reflections from the projectile, this divergence is not unexpected. To use these graphs to predict optimum relative pin position now becomes difficult, especially for nitrogen. Although the curves have well-defined peaks, these peaks are in the region where the wrong theory defines the peaks. To reiterate, the "real" peak must be someplace to the left of the diamonds.

Another consideration in predicting velocity is associated with the very low Mach number region. For example, consider low initial accelerations with helium. The sound speed is sufficiently high so that many wave reflections occur while the projectile moves only slightly. This situation leads to a nearly

uniform gas pressure between the projectile and the end of the breech. When the projectile remains at a low Mach number, the pressure drops uniformly in the driver section as the projectile moves and the volume increases. Under this condition, Lagrange results should be more appropriate than Pidduck-Kent results.

The net result of these theoretical considerations is that the velocity peak moves toward lower relative pin position with increasing initial acceleration, the peak is somewhere to the left of and near the diamonds, and the peaks differ in amplitude and location for helium and nitrogen. However, experimental results must be evaluated to verify the appropriateness and the range of any of the theories presented.

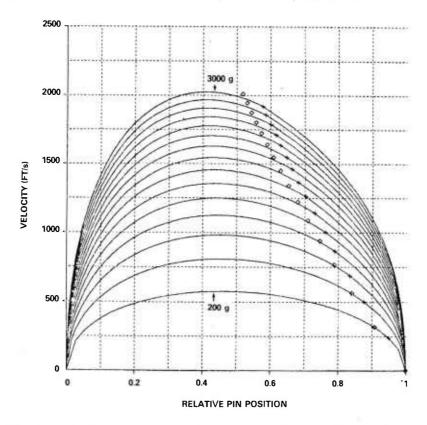


Figure 16. Pidduck-Kent and infinite driver theories combined, helium, 200 to 3000 g.

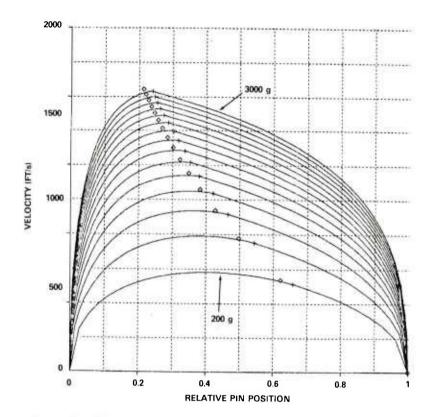


Figure 17. Pidduck-Kent and infinite driver theories combined, nitrogen, 200 to 3000 g.

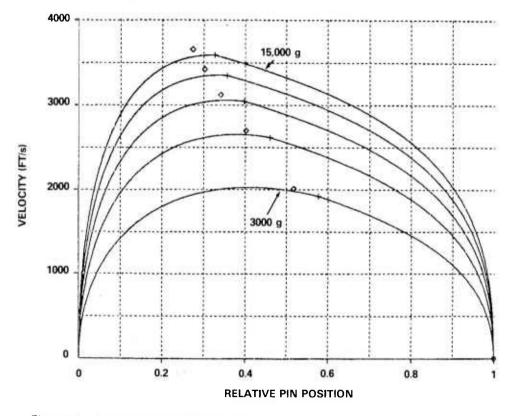


Figure 18. Pidduck-Kent and infinite driver theories combined, helium, 3000 to 15,000 g.

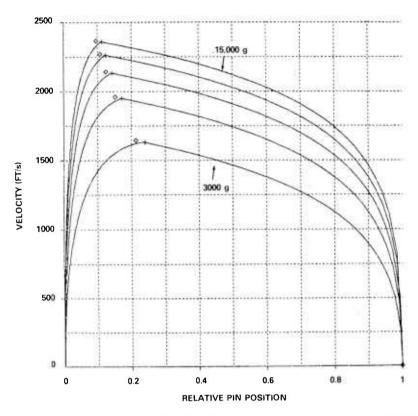


Figure 19. Pidduck-Kent and infinite driver theories combined, nitrogen, 3000 to 15,000 g.

6. EXPERIMENTAL RESULTS

6.1 Procedure

Many of the results included in what follows were made during routine operation of the gun. The projectiles were not specially prepared for optimum gun performance (fig. 20). Several projectiles were used. The most critical tolerances for these experiments, those associated with projectile diameter and the distance between the two bore riders (wheel base), were only grossly controlled. The projectile diameter ranged from 0.004 to 0.015 in. (102 to 381 μ m) less than the gun i.d. The wheel base was typically 1 to 1.5 calibers. The center of mass of the projectile typically was near or aft of the rear bore rider.

6.2 Data

Experiments have been run with nitrogen with the projectile restraining section at two positions and with helium with the projectile restraining section at one of these positions. Maximum pressure was 300 psia (2070 kPa absolute). Projectile weights varied from 0.5 to 5 lb (0.25 to 2.5 kg) and covered the velocity range from 500 to 2600 ft/s (150 to 780 m/s). The first series of experiments had the projectile restraining section at the end of the first breech section; this was the easiest section to access. Sixty-nine shots were fired using nitrogen with the projectile restraining section located here. Subsequently, 229 tests with nitrogen and 94 tests with helium were run with the projectile restraining section between gun sections 3 and 4.

Figure 20. Typical projectiles used in study.

Each set of test data is plotted along with predictions from each of the three theories (fig. 21 to 23). The theoretical predictions were obtained from the program THEORY.

If the gun behaved as a constant acceleration gun, then the velocity would be proportional to the square root of the acceleration. Therefore, the x-axis in the figures was chosen to be the square root of the initial acceleration rather than the initial acceleration. This choice linearizes the results somewhat and eliminates a considerable amount of curvature from the plots.

The first set of results (fig. 21) represents the data for a nitrogen pressure

driver, with the projectile restraining section between gun sections 1 and 2. This is a long barrel, short driver case with a relative pin position of 0.117. Each plus sign represents an experimental result. Except for an occasional "low" point, the data follow Pidduck-Kent theory. Referring to figure 17, a vertical line drawn at a relative pin position of 0.117 would intersect only Pidduck-Kent curves, regardless of initial acceleration.

Figure 22 shows the results obtained with a nitrogen driver and the projectile restraining section between gun sections 3 and 4. The relative pin position is 0.372. At initial accelerations up to about 1000 g, Pidduck-Kent is favored; above 1000 g, the results are closest to and within a few percentage points

of infinite driver theory. Again referring to figure 17, a vertical line at 0.372 would intersect Pidduck-Kent curves up to 800 g and infinite driver curves for higher initial accelerations.

The third set of data (fig. 23) was based on a configuration that was geometrically the same as the last set, but the driver gas used was helium. In this set, Lagrange theory or Pidduck-Kent theory applies equally to the data below 1000 g. At higher acceleration, the data slightly exceed Pidduck-Kent theory. Reference to figure 16 at a relative pin position of 0.372 yields only Pidduck-Kent intersections up to initial accelerations of 3000 g. Figure 18 shows intersections with infinite driver only above 9000 g.

The combined experimental results are presented in figure 24 for comparison. The data of each set (delta, plus, and times sym-

bols) are sufficiently separated from those of the other sets so that it is relatively easy to picture the trends associated with each. Experimental results at about 200-g initial acceleration show equivalent or slightly higher velocities for nitrogen compared with those for helium at the same projectile restraining section. As the initial acceleration increases, the superior results for helium are apparent.

The experimental velocities attained with nitrogen at a relative pin position of 0.372 exceed those at a relative pin position of 0.117 (fig. 24). However, the difference in velocities decreases with increasing initial acceleration. These two sets of data should eventually cross when the 0.117 gun acceleration is sufficiently large for infinite driver theory to govern. Then for larger initial acceleration, the longer barrel of the gun with a relative pin position of 0.117 (0.883) produces higher velocities than that with 0.372 (0.628).

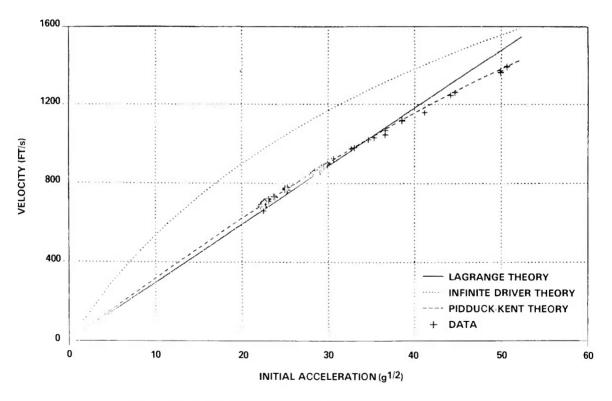


Figure 21. Data and theories, nitrogen, relative pin position of 0.117.

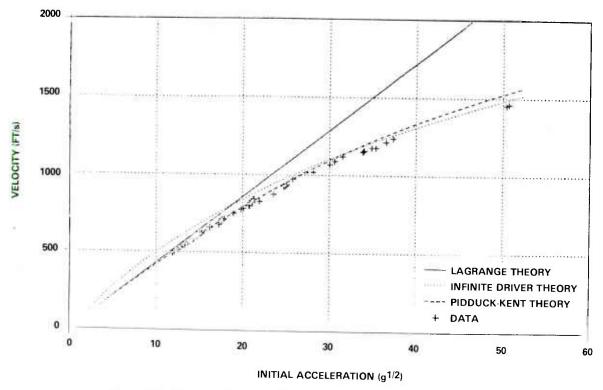


Figure 22. Data and theories, nitrogen, relative pin position of 0.372.

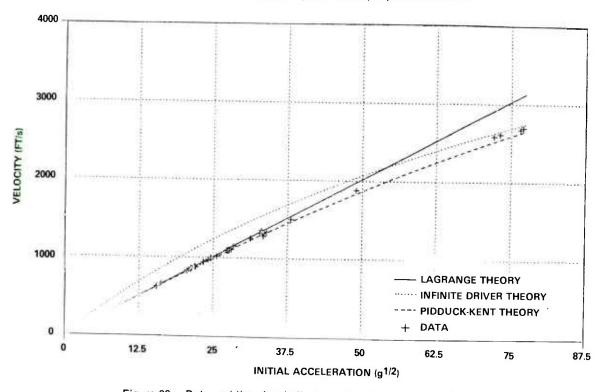


Figure 23. Data and theories, helium, relative pin position of 0.372.



Figure 24. Combined data, nitrogen and helium, relative pin positions of 0.117 and 0.372.

7. DISCUSSION

The experimental data for helium show higher velocities than for nitrogen at the same initial accceleration for velocities above 750 ft/s (225 m/s) (fig. 24). Helium follows Lagrange theory or Pidduck-Kent theory for the lower velocities and Pidduck-Kent for velocities above 1500 ft/s (500 m/s) (fig. 23). From the assumptions associated with these theories, it follows that as the projectile restraining section is moved away from the muzzle (decreasing relative pin position), these theories should continue to be appropriate. (It is not clear that these theories will be appropriate if the pin is shifted toward the muzzle. In this region, the gun approaches an infinite driver configuration, and infinite driver theory may govern.)

No clear-cut optimum relative pin position has resulted from the experimental or

theoretical investigation. Choice of relative pin position becomes a matter of judgment, which may be influenced by secondary considerations such as (1) expected range of use, (2) minimization of the volume (mass) of gas used, (3) minimization of the pressure behind the projectile at muzzle exit, and (4) ease of operation.

Figure 25 presents Lagrange curves and Pidduck-Kent curves for the first three possible projectile restraining section locations in the gun. Analysis of Lagrange theory readily yields the initial acceleration required at one projectile restraining section compared with the acceleration at a second projectile restraining section (acceleration ratio) to produce the same muzzle velocity. (From the form of the Pidduck-Kent equations, it appears that this acceleration ratio varies with the initial acceleration. Nevertheless, from the Lagrange curve and Pidduck-Kent curve shapes of figure 25,

any generalization based on trends applicable to Lagrange theory is generally applicable to Pidduck-Kent theory in this acceleration regime.)

Consider the quantity (mass) of gas used per test as a secondary criterion. As an example, assume that helium is used and that the gun is operating in the Lagrange regime or the Pidduck-Kent regime. (If the acceleration is sufficiently high to operate in the infinite driver regime, then reducing the relative pin position increases muzzle velocity.) The gas required for a shot is immediately available from the gun dimensions and required initial pressure (acceleration) (program WTVSRPP).

Figures 26 and 27 show the mass of gas

(relative to the projectile mass) required versus projectile restraining section location (relative pin position) for velocities from 300 to 1000 ft/s (90 to 300 m/s). A significant observation is that the minimum gas mass required is at a relative pin position of zero. (Although as the relative pin position approaches zero the required pressure becomes infinite, the volume and the mass go to zero.) The quantity of gas increases monotonically with increasing relative pin position. It is apparent that to minimize the amount of gas used, one would choose the smallest driver, whether it be helium (fig. 26) or nitrogen (fig. 27). This choice is important when the gun operates with helium because of the time involved in purging and filling the driver; that is, the smaller the driver and the less gas required, the faster the operation (firing).

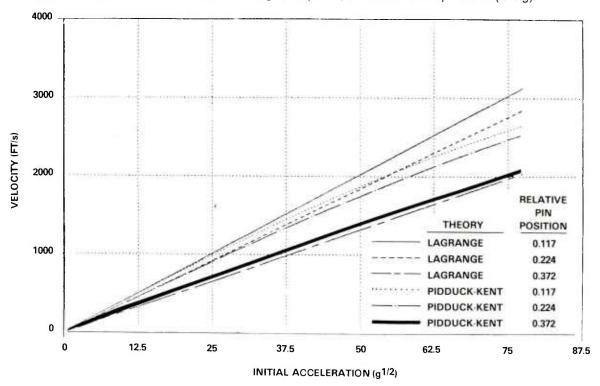


Figure 25. Lagrange and Pidduck-Kent theories, helium, relative pin positions of 0.117, 0.244, and 0.372.

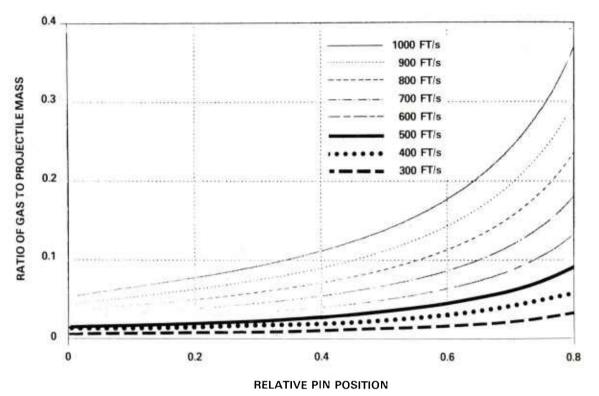


Figure 26. Helium (Lagrange theory).

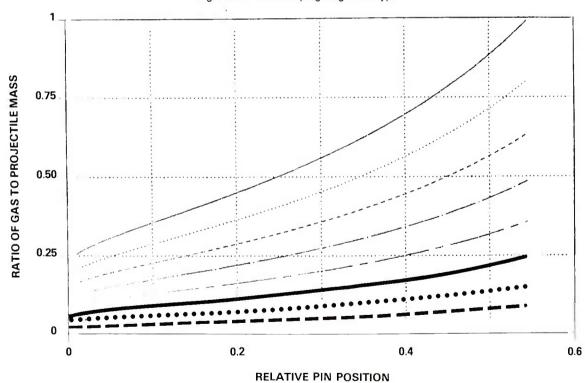


Figure 27. Nitrogen (Lagrange theory).

Another consideration is the amount of energy stored in the gas when the projectile exits from the gun. This energy may damage equipment or interfere with the impact experiments. The theory presented in program NRG predicts the energy transferred from the driver gas to the projectile. The final driver gas energy (enthalpy) was obtained by subtracting the projectile muzzle energy from the initial gas energy. The results (fig. 28) show that the smaller the driver (small relative pin position), the greater the amount of energy transferred to the projectile and therefore the smaller the amount of energy remaining in the gas. (Note: The greater the degrees of freedom of the gas, the less energy transferred to the projectile.)

The effects of projectile restraining section placement on several parameters are presented in table 2. The five projectile restraining section locations are nearest the

breech. The effects are arbitrarily referenced to the present pin location (between sections 3 and 4). For example, the initial acceleration required to produce a particular muzzle velocity for a projectile restraining section between sections 3 and 4 is assigned a value of 1. The initial acceleration required to produce the same velocity for the pin between sections 1 and 2 would be 2.02 times as great (table 2, second parameter).

Note that the fourth pin position (relative pin position of 0.500) is close to the optimum location based on Lagrange theory (relative pin position of 0.465, helium, table 1). Table 2 indicates that moving the pin to this position reduces the initial acceleration by only 3 percent, but requires 30 percent more gas. If a 21-percent increase in initial acceleration is tolerable, then gas usage can be cut 21 percent by moving the projectile restraining sec-

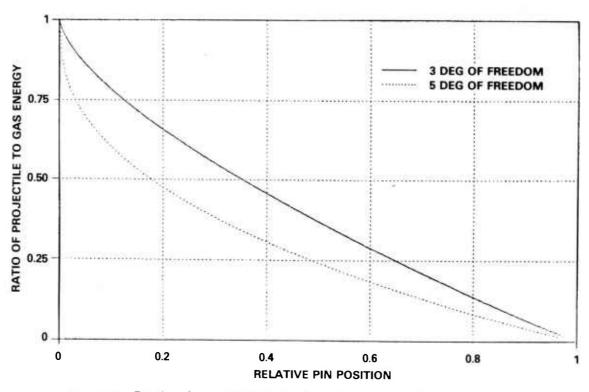


Figure 28. Fraction of energy gained by projectile from driver gas (Lagrange theory).

tion back one section. Moving the projectile restraining section back two sections to its original location is not as attractive.

The data of the fourth parameter of table 2 show that there would be a 24-percent reduction in gas energy at breech exit by moving the projectile restraining section back one section.

8. CONCLUSIONS AND REMARKS

A theoretical and experimental study was made to determine where a fixed length, constant diameter tube should be divided so that when one portion of the tube is used as a gun barrel and the remaining portion is used as a driver (chamber), the maximum projectile muzzle velocity can be obtained for a particular driver gas and initial acceleration. Studies of several HDL 4-in. gas gun configurations indicated that no one configuration is best for all velocities greater than 500 ft/s (150 m/s), the range of interest. (For lower velocities, the gun is used in the 1-atm configuration, where the entire tube length is used for the barrel and ambient air is the driver. This configuration is not relevant to the study.)

For the cases considered (short driver versus long driver, helium versus nitrogen, and in-

itial accelerations from 200 to 5000 g), the experimental results generally follow different theories in different operating regimes: Lagrange theory in the very low Mach number regime, infinite driver theory in the very high acceleration regime, and Pidduck-Kent theory in other regimes. Although the various results are explicable in terms of the postulated theories, no one theory accurately predicts the entire range of experimental results. Therefore, it is difficult to infer a general optimum configuration because theoretical predictions around the optimum are in most cases conflicting or poorly defined or both. Because no clear-cut division of the tube can be inferred to optimize muzzle velocity, secondary criteria such as quantity of gas required, energy remaining in the gas, (statistical) utilization of the gun, and ease of operation can influence the configuration without unduly affecting muzzle velocity.

In conclusion, significant savings in gas usage and reductions in gas energy at muzzle exit can be realized with only a small acceleration penalty by reconfiguring the HDL gun to a one section longer barrel and one section shorter driver.

TABLE 2. EFFECTS OF PROJECTILE RESTRAINING SECTION WITH HELIUM DRIVER

Parameter	Projectile restraining section between sections				
	1 and 2	2 and 3	3 and 4	4 and 5	5 and 6
Relative gun position	0.117	0.245	0.372	0.500	0.628
Initial acceleration ratio to attain particular muzzle velocity	2.02	1.21	1.00	0.97	1.07
Ratio of required gas masses	0.63	0.79	1.00	1.30	1.81
Ratio of final driver gas energy to initial gas energy	0.46	0.76	1.00	1.22	1.42

Note: Reference is projectile restraining section location between sections 3 and 4; relative pin position is 0.372.

ACKNOWLEDGEMENT

The author extends his appreciation to Forrest Nelson, William McIntosh, and Robert Kayser for their careful performance of the experiments and their faithful recording of the data.

NOMENCLATURE

a A K	Initial sound speed in driver reservoir Cross-sectional area of gun barrel 2APL/M
L	Total gun length (barrel + driver, X + Y)
М	Projectile mass
Ν	Degrees of freedom of driver gas: $N = 3$
	for helium and N = 5 for nitrogen
Р	Initial gas pressure in driver reservoir
u	Projectile Mach number based on initial
	sound speed (U/a)
U	Projectile velocity
X	Length of driver reservoir
Υ	Length of barrel
Z	Relative pin position in gun (X/L)

APPENDIX A.—COMPUTER PROGRAMS

The computer programs on the following pages were written in VAX-11 BASIC, a compilable, native mode language. Since the language is not as restrictive as standard BASIC, a few of the major differences are pointed out for those who wish to adapt the programs to their own computers.

Comments.—In addition to REM statements, the exclamation point serves as a comment delimiter.

Example:

10 THIS=THAT ! SET THE VARIABLE THIS EQUAL TO THE VARIABLE THAT

Continuations.—A line may be continued on the following line when the last character on the line to be continued is an ampersand.

Example:

10 THIS= &

THAT

Multiline statements.—Statements to be executed in continuous order can be on the same line if they are separated by a back slash.

Example:

10 THIS=7 \ THAT=8

Line numbers.—Line numbers are not required if the statement is indented at least one character from the left margin. Lines are executed in order.

Example:

10 THIS=7

THAT=8

Variables.—Names of variables are allowed to be up to 32 characters long and can contain most ASCII characters.

Example:

10 DEG.OF.FREEDOM=2/(GAMMA-1) \ AVG__A=SUM__A/NO

Use of these enhancements produced programs that are easier to read and to follow than standard BASIC. The programs included are PDQ, CONDIA, CATCH, CDPK, THEORY, WTVSRPP, and NRG. Other programs were used to retrieve the data from the record files and to plot the data. However, these are not general and would be of little use to the reader.

```
10 REM
```

PDQ.BAS APRIL 1980 H D CURCHACK

PIDDUCK-KENT THEORY SEE SEIGEL HIGH SPEED GUNS PP 180-181

```
DIAM=4 ! IN. !
20
                                                   X SEC AREA=PI*DIAM^2/4
        GAS$(1)="HELIUM"
                                                   GAS$(Z)="NITROGEN"
        SPEED(1)=3300 !FT/SEC!
                                                   SPEED(2)=1145
        DEG OF FREEDOM(1)=3
                                                   DEG OF FREEDOM(2)=5
        GAMMA(T) = 5/3
                                                   GAMMA(2)=7/5
        THISSTEP=500
                                                   DEL MU=1/THISSTEP
        TOTAL L=94
30 FOR GAS=1 TO 2 \ PRINT GAS$(GAS)
        NO=DEG OF FREEDOM(GAS) \ CO=SPEED(GAS) \ GAMA=GAMMA(GAS) GAS_STEP(T)=.0005 \ GAS_STEP(2)=.0025
        OPEN "PK."+LEFT$(GAS$(GAS),3) FOR OUTPUT AS FILE #GAS
        GOSUB 40 FOR INIT G=200 TO 3001 STEP 200
        CLOSE #GAS
        OPEN "PK1."+LEFT$(GAS$(GAS),3) FOR OUTPUT AS FILE #GAS
        GOSUB 40 FOR INIT G=3000 TO 15001 STEP 3000
        CLOSE #GAS
    NEXT GAS
    GOTO 90
40
        ! PIDDUCK KENT SUBROUTINE
        PRINT "INITIAL G ="; INIT G ! TERMINAL OUTPUT DURING RUN
            A BAR IS A PARAMETER USED BY SIEGEL TO DETERMINE G/M AND VEL
        FOR A BAR=0 TO 1 STEP GAS STEP(GAS)
                 ! INTEGRATION !
                 INTGRAL=0
                 FOR INTVAL=0 TO THISSTEP
                         MU=INTVAL*DEL MU
                         F OF MU=(1-A \overline{B}AR*MU^2)^(NO/2)
                         INTGRAL=INTGRAL+F OF MU
                NEXT INTVAL
                 INTGRAL=(INTGRAL-.5*(1+F OF MU))/THISSTEP
                         ! INTEGRATION COMPLETE!
                G OVER M=(NO+2)*A BAR*(1-A BAR)^(-(NO+2)/2)*INTGKAL
50 REM
                - CONVERT G OVER M TO INIT G AND DRIVER L -
                         CO^{2}=GAM\overline{A}*P/RHO
        ALSO
                         WEIGHT OF GAS (G)=RHO*X SEC A*DRIVER L
```

```
DRIVER_L=G/(RHO*X SEC A)

=G*CO^2/(GAMA*P*X SEC A)

=G*CO^2/(GAMA*P*X SEC A)

=G*CO^2/(GAMA*INIT_G*M)

THEREFORE

DRIVER_L=G OVER M*CO^2/(GAMA*INIT_G*32.2)

FRAC L=DRIVER_L/TOTAL_L

IF FRAC L>1

THEN 80

ELSE VEL=2*CO/(GAMA-1)*SQR(A BAR*(1-FRAC L^(GAMA-1)))

PRINT #GAS USING "#.###, ####.#",FRAC_L,VEL

NEXT A BAR
PRINT #GAS," 1., 0."

RETURN

90 END
```

10 REM

```
CONDIA
```

```
H D CURCHACK
                                                APR 1980
20
        DIA=4 ! IN. !
                                                 X SEC AREA=PI*DIA^2/4
        GAS$(1)="HELIUM"
                                                 GAS$(Z)="NITROGEN"
                                                 SPEED(2)=1145
        SPEED(1)=3300 !FT/SEC!
                                                 DEG OF FREEDOM(2)=5
GAMMA(Z)=7/5
        DEG OF FREEDOM(1)=3
        GAMMA(T)=5/3
        TOTAL L=94
                                                 OUT$="#.#### . ####.#"
30 FOR GAS=1 TO 2
        NO=DEG OF FREEDOM(GAS)
        N1=N0+T
        NO1=NO/N1
        CO=SPEED(GAS)
        PKINT GASS(GAS)
        EXTENS=LEFTS(GASS(GAS),3)
        FILE$(1)="CONDIA."+EXTEN$
        FILE$(2)="BEGINCD."+EXTENS
        FILES(3)="CATCH."+EXTENS
        OPEN FILES(I) FOR OUTPUT AS FILE #GAS+I-1 FOR I=1 TO 2
        OPEN FILES(3) FOR INPUT AS FILE #(GAS+2)
        GOSUB 40 FOR INIT G=0 TO 3000 STEP 200
        CLOSE #GAS, #GAS+1, #GAS+2
        FILE$(1)="CONDIA1."+EXTEN$
        FILES(2)="BEGINCD1."+EXTENS
        FILE$(3)="CATCHI."+EXTENS
        OPEN FILES(I) FOR OUTPUT AS FILE #GAS+I-1 FOR I=1 TO 2
        OPEN FILE$(3) FOR INPUT AS FILE #(GAS+2)
        GOSUB 40 FOR INIT G=0 TO 15000 STEP 3000
        CLOSE #GAS, #GAS+1, #GAS+2
   NEXT GAS
   GOTO 110
        ! INFINITE RESERVOIR SUBROUTINE
40
        PRINT INIT G
        IF INIT G⟨∑0
           THEN PRINT #GAS," 0., 0."
                FOR DRVR=0 TO TOTAL L STEP 1
                        G X L=32.2*(TOTAL L-DRVR) !(FT/SEC)SQUARE !
                        GOSUB 60
                        PRINT #GAS USING OUTS ,DRVR/TOTAL L,UO*CO
                NEXT DRVR
50
        INPUT #(GAS+2), FRAC L,
        G X L=32.2*(1-FRAC T)*TOTAL L
        GOSUB 60
        PRINT #(GAS+1) USING OUTS, FRAC L, UO*CO
```

RETURN

60 ! DETERMINE VELOCITY WHICH IS IMPLICIT IN TERMS OF DISTANCE.

```
Y0=G \times L*INIT_G/C0^2
F1=.T
        UO=SQR(YO)
        IF UO>NO-1
           THEN UO=NO-1
70
        X9=Y0/10000
        IF X9<1.00000E-07
           THEN X9=1.00000E-07
80
        !
                                  LOOP
        X=NO1 * (1-(1-UO/NO1) / (1-UO/NO)^N1)
        X1=Y0-X
        S0=SGN(X1)
        IF F2=S0
           THEN F2=0
                 F1=F1/2
90
        IF ABS(X1)>X9
           THEN U0=(1+S0*(F1))*U0
                 F2=-S0
                GO TO 80
                                  END LOOP
100
        RETURN
110 END
```

10 REM

CATCH

```
APRIL, 1980
                                                    CURCHACK
        Compute point at which first reflected wave intercepts the
        projectile path.
        Elimination of the velocity at which the first wave overtakes the projectile (Seigel 13-7 by substitution into eq. 12-1)
        yields the distance that the wave overtakes the projectile.
  LET
        F=1-U*(GAMA-1)/(2*A)
  THEN
        F=(1+(GAMA+1)*X D/2)^(-2*(GAMA-1)/(GAMA+1))
                                                               (13-7)
  HENCE
        X B=2/(GAMA+1)*((2-(GAMA+1)*F)/(GAMA-1)/F^((GAMA+1)/(GAMA-1))+1)
        WHERE X D AND X B ARE THE DIMENSIONLESS DRIVER AND BARREL LENGTHS
20
        DIAM=4 ! IN. !
                                                     X SEC AREA=PI*DIAM^2/4
                                            \
        TOTAL L=94
        GAS$(T)="HELIUM"
                                                     GAS$(2)="NITROGEN"
                         !FT/SEC!
                                            1
                                                     SPEED(2)=1145
         SPEED(1)=3300
        DEG OF FREEDOM(1)=3
                                            ١
                                                     DEG OF FREEDOM(2)=5
                                                     GAM\overline{A}(2)=7/5
        GAM\overline{A}(1)=5/3
30 FOR GAS=1 TO 2
        NO=DEG OF FREEDOM(GAS)
        PRINT GASS(GAS)
         OPEN "CATCH."+LEFTS(GASS(GAS),3) FOR OUTPUT AS FILE #GAS
         OPEN "CATCHI."+LEFT$(GAS$(GAS),3) FOR OUTPUT AS FILE #GAS+2
         F1 GAM=(GAMA(GAS)+1)/2
         F2 GAM=(GAMA(GAS)-1)/2
         C \overline{SQ}=SPEED(GAS)^2
         FYL=GAS
         GOSUB 40 FOR INIT G=0 TO 3000 STEP 200
         CLOSE #FYL
         FYL=GAS+2
         GOSUB 40 FOR INIT G=0 TO 15001 STEP 3000
         CLOSE #FYL
   NEXT GAS
   GOTO 90
40
         ! OVERTAKE COMPUTATION
         PRINT "INITIAL G ="; INIT G
                                            ! TERMINAL OUTPUT DURING EXECUTION
         D START=0
         D STEP=TOTAL L/8
         RESOLUTE=0
```

TRAVEL D=0

```
50
         FOR DRVR=D START TO TOTAL L STEP D STEP
                   X \overline{D}=32.2*DRVR*INI\overline{T} G/C SQ
         !
                            REFLECTED WAVE COMPUTATION
                  F=(1+F1_GAM*X_D)^(-2*F2_GAM/F1_GAM)
X_B=((1-F1_GAM*F)/F^(F1_GAM/F2_GAM)/F2_GAM+1)/F1_GAM
                   IF INIT G(>0
                      THEN TRAVEL D=X B*C SQ/(32.2*INIT G)
60
                   CATCH D=(TRAVEL D+DRVR)/TOTAL L
                   IF CATCH D<1
                      THEN 70
                      ELSE RESOLUTE=RESOLUTE+1
                            IF RESOLUTE>10
                               THEN 80
                               ELSE D START=DRVR-D STEP
                                     D STEP=D STEP/Z
                                     GOTO 50
70
         NEXT DRVR
80
         FRAC L=DRVR/TOTAL L
         PRINT #FYL USING "#.#### , #.#### , #####", FRAC_L, CATCH_D, INIT_G
         RETURN
90 END
```

70

80

IF FRAC L<1 THEN 50

10 REMODILICATION OF THE PROPERTY OF THE PROPE

CDPK.BAS

APR 80

H D CURCHACK

```
Read previously determined Pidduck-Kent velocity from the
        appropriate file, compute the infinite driver length velocity
        at the same relative length, then choose the value from the
        theory that predicts the lower velocity. Once the latter
        theory produces the lower velocity, only use that theory since
        Pidduck-Kent is no longer appropriate.
                                                 X SEC AREA=PI*DIAM^2/4
20
        DIAM=4
                                                 GASS(2) ="NITROGEN"
        GAS$(1)="HELIUM"
        SPEED(1)=3300 !FT/SEC!
                                                 SPEED(2)=1145
                                                 DEG OF FREEDOM(2)=5
        DEG OF FREEDOM(1)=3
                                                 GAMMA(2)=7/5
        GAMMA(T)=5/3
                                                 F$(2)=F$(1)+" . *"
        F$(1)="#.### , ####.#"
        TOTAL L=94
30 FOR GAS=1 TO 2
        NO=DEG OF FREEDOM(GAS) \ PRINT GAS$(GAS)
        FXS=LEFTS(GASS(GAS),3)
        OPEN "PK."+FX$ FOR INPUT AS FILE #(GAS+2)
        OPEN "CDPK."+FX$ FOR OUTPUT AS FILE #GAS
        OPEN "CDPKINT."+FX$ FOR OUTPUT AS FILE #(GAS+4)
        GOSUB 40 FOR INIT G=200 TO 3000 STEP 200
        CLOSE \#GAS, \#(GAS+2), \#(GAS+4)
        OPEN "PK1."+FX$ FOR INPUT AS FILE #(GAS+2)
        OPEN "CDPK1."+FX$ FOR OUTPUT AS FILE #GAS
        OPEN "CDPKINT1."+FX$ FOR OUTPUT AS FILE #(GAS+4)
        GOSUB 40 FOR INIT G=3000 TO 15001 STEP 3000
        CLOSE \#GAS,\#(GAS+\overline{2}),\#(GAS+4)
    NEXT GAS
    GOTO 170
                                      ! TERMINAL OP DURING RUN
        PRINT "INITIAL G ="; INIT G
40
         V FLAG=0
         INPUT #GAS+2, FRAC L, VEL
50
        DRVR=TOTAL L*FRAC
                                          !(FT/SEC)SQUARE !
        G \times L=32.2 \times (TOTAL L-DRVR)
        COSUB 100
        NEW VEL=UO*SPEED(GAS) \ OUT VEL=VEL
         IF V FLAG=1
            THEN OUT VEL=NEW VEL
                 GOTO 70
        IF NEW VEL<=VEL
60
            THEN OUT VEL=NEW VEL
                 V FLAG=1
                 PRINT #(GAS+4) USING F$(1), FRAC L,OUT VEL
         PRINT #GAS USING F$(1+V FLAG), FRAC L ,OUT VEL
```

```
90 RETURN
100
         ! SUBROUTINE TO DETERMINE VELOCITY GIVEN A LENGTH FOR ! A CONSTANT DIAMETER GUN. EQUATION IS
         ! IMPLICIT FOR VELOCITY AND EXPLICIT FOR LENGTH.
         YO=G X L*INIT G/SPEED(GAS)^2
110
         Fl=.1
         I=0
         U0=SQR(Y0)
         IF UO>NO-1
            THEN UO=NO-1
120
         X9=Y0/10000
         IF X9<1.00000E-07
            THEN X9=1.00000E-07
         1
                             LOOP
130 \text{ X=(NO/(NO+1))} * (1-(1-(NO+1)*UO/NO) / (1-UO/NO)^(NO+1) )
         ! SEE FOR EXAMPLE EQ B11, HDL-TR-1330, CURCHACK
         X1=Y0-X
         SO=SGN(X1)
140
         IF F2=S0
            THEN F2=0
                  F1=F1/2
150
         IF ABS(X1)>X9
            THEN UO=(1+SO*(F1))*UO
                  F2=-S0
                  GO TO 130
160 RETURN
                                   ! END LOOP
170 END
```

```
^^^^^^^
                                THEORY
                APR 80
                                                H D CURCHACK
        Range of Speeds vs Initial g for Isentropic Gun.
        Same for Constant Dia Gun. Outputs to separate files.
        Same for Pidduck-Kent Gun. Outputs to separate files.
                                CONSTANTS
20
        DIA=4 ! IN.
                                        1
                                                X SEC AREA=PI*DIA^2/4
   SHORT=1
                        \ REG=2
                                                 \ LNG=3
   BARREL(SHORT)=59
                                                 \ BARREL(LNG)=83
                        \ BARREL(REG)=71
                        DRIVER(SHORT)=35
                                                \ DRIVER(LNG)=11
   RPP$(SHORT)=".SHO;1" \ RPP$(REG)=".MED;1"
                                                \ RPP$(LNG)=".LON; 1"
   G X L(I)=32.2*BARREL(I) FOR I=SHORT TO LNG
                                               ! (FT/SEC)SQUARE
  TOTAL L=BARREL(SHORT)+DRIVER(SHORT)
        GAS$(1)="HELIUM"
                                                 GASS(2)="NITROGEN"
        SPEED(1)=3300
                      !FT/SEC!
                                                 SPEED(2)=1145
                                                 DEG OF FREEDOM(2)=5
GAMMA(2)=7/5
        DEG OF FREEDOM(1)=3
        GAM\overline{M}A(T)=5/3
        FORM2S="#.### .
                       #.###"
                                                 FORM4S="####.#
                                                                 #### . #"
        MAX INIT G(1)=5500
                                                MAX INIT G(2)=2750
30 FOR GAS=1 TO 2
        START G=MAX INIT G(GAS)
        CU=SPEED(GAS)
        GAMA=GAMMA(GAS)
        NO=DEG_OF_FREEDOM(GAS)
MORE$=LEFT$(GAS$(GAS),3)
        FOR BARREL%=SHORT TO LNG
                MY FILES="ISEN"+MORES+RPP$(BARREL%)
                OPEN MY FILES FOR OUTPUT AS FILE #GAS PRINT "FILE="; MY_FILES
                FRAC L=DRIVER(BARKEL%)/TOTAL L
                FRAC L FACT=NO*FRAC L*(1-FRAC L^(2/NO))/2
                FOR INIT G=0 TO START G STEP 25
                        YO=G X L(BARREL%)*INIT G/CO^2
```

PRINT #GAS USING FORM4\$, INIT_G, MACH_NO*CO
40 NEXT INIT_G
CLOSE #GAS

50

MY FILES="COND"+MORES+RPPS(BARREL%)
OPEN MY FILES FOR OUTPUT AS FILE #GAS
PRINT "FILE=";MY FILES
G X L(3)=G X L(BARREL%) !(FT/SEC)SQUARE !
FOR INIT G=0 TO START G STEP 25
RO=INIT G/X SEC AREA
GOSUB 170
PRINT #GAS USING FORM4\$, INIT G , UO*CO

K=2*(YO*TOTAL L/BARREL(BARREL%))

MACH NO=SQR(K*FRAC L FACT)

```
60
                  NEXT INIT G
                  CLOSE #GAS
70
         NEXT BARREL%
         !
                           PIDDUCK-KENT THEORY
                  SEE SEIGEL HIGH SPEED GUNS PP 180-181
         OPEN "PIDD"+MORE$+RPP$(BRL%) FOR OUTPUT AS FILE #BRL%
                                                      FOR BRL%=1 TO 3
         FLAG(1)=0 \ FLAG(2)=0 \ FLAG(3)=0 

GAS_STEP(1)=.001 \ GAS_STEP(2)=.0025
         GOSUB 100
         CLOSE #1,#2,#3
80 NEXT GAS
90 GOTO 220
100 ! A BAR IS A PARAMETER USED BY SEIGEL TO DETERMINE G/M AND VEL!
         THISSTEP=500 \ DEL MU=1/THISSTEP
         FOR A BAR=O TO 1 STEP GAS_STEP(GAS)
         FOR SUMMY=0 TO THISSTEP-1
                 MU=SUMMY*DEL MU
                 NUMU=MU+DEL MU
                 DEL AREA=(1-A BAR*MU^2)^(NO/2)+(1-A BAR*NUMU^2)^(NO/2)
                 INTGRAL=INTGRAL+DEL AREA
         NEXT SUMMY
         INTGRAL=INTGRAL/2/THISSTEP
         G OVER M=(NO+2)*A BAR*(1-A BAR)^(-(NO+2)/2)*INTGRAL
110 -
         FOR BRT%=SHORT TO LNG
                 FRAC L=DRIVER(BRL%)/TOTAL L
                 IF F\overline{L}AG(BRL\%)=1
                     THEN 130
                                   ! DON'T COMPUTE IF INIT G TOO LARGE
120
                 INIT G(BRL%) = G OVER M*CO<sup>2</sup>/(GAMA*DRIVER L*32.2)
                 VEL=\overline{2}*CO/(GAMA-1)*SQR(A BAR*(1-FRAC L^(GAMA-1)))
                 IF INIT G(BRL%) <= START G
                    THEN PRINT #BRL% USTNG FORM4$, INIT G(BRL%), VEL
                    ELSE FLAG(BRL\%)=1
130
        NEXT BRL%
140
         INTGRAL=0
         IF INIT G(1)>START G
            THEN RETURN
150 NEXT A BAR
160 RETURN
        1
                          COMPUTATION SUBROUTINE
170
        Y0=G X L(3)*R0*X SEC AREA/C0^2
        Fl=.T
        I=0
        UO=SQR(YO)
        IF U0>N0-1
            THEN UO=NO-1
180
        X9=Y0/10000
        IF X9<1.00000E-07
           THEN X9=1.00000E-07
```

APPENDIX A

```
1
                                LOOP
190
        X=(NO/(NO+1)) * (1-(1-(NO+1)*UO/NO) / (1-UO/NO)^(NO+1))
        I=I+1
        X1=Y0-X
        SO=SGN(X1)
        IF F2=S0
           THEN F2=0
               F1=F1/2
200
        IF ABS(X1)>X9
          THEN UU=(1+SU*(F1))*UU
                F2=-S0
                GO TO 190
                               END LOOP
210 RETURN
220 END
```

```
WTVSRPP.BAS
&
       The isentropic expansion theory permits ready estimation of
       the quantity of gas (proportional to G.OVEk.M) required
       to produce a given velocity as a function of the relative pin position (FRAC.L). Note that G.OVER.M is a monotonic
       function of FRAC.L.
               - CONVERT G.OVER.M TO INIT.G AND DRIVER.L -
                 CO^2=GAMA*P/RHO
       ALSO
                 WEIGHT OF GAS (G)=RHO*X.SEC.A*DRIVER.L
                 DRIVER.L=G/(RHO*X.SEC.A)
                         =G*C0^2/(GAMA*P*X.SEC.A)
                         =G*C0^2/(GAMA*INIT.G*M)
       THEREFORE
                 DRIVER.L=G.OVER.M*CO^2/(GAMA*INIT.G*32.2)
15
       DIM FR(200), GOM(8,200)
20
       GAS$(1)="HELIUM"
                                              GASS(2)="NITROGEN"
       GAMMA(1)=5/3
                                              GAMMA(2)=7/5
       ** #.##### #.###### #.###### #.######
30 FOR GAS=1 TO 2
       PRINT GAS$(GAS);
       GAMA=GAMMA(GAS)
       GAM1=GAMA-1
       GAM2=GAMA*GAM1/2 \ PRINT "FACTOR GAM2 =":GAM2
       MAX. L=.8
       K=()
       FOR VELOCITY=300 TO 1000 STEP 100
               K=K+1
               MACH.NO=VELOCITY/SPEED(GAS)
               FACT1=MACH.NO^2 * GAM2 \ PRINT VELOCITY.FACT1
               FOR FRAC.L=0 TO MAX.L STEP .005
                       G.OVER.M=FACT1 / (1-FRAC.L^GAM1)
                       IF G.OVER.M <=1
                          THEN KK=KK+1
                              .GOM(K,KK)=G.OVER.M
                               FR(KK)=FRAC.L
                          ELSE GOTO 37
           35 NEXT FRAC.L
37
        NEXT VELOCITY
       OPEN "WTVSRPPO."+LEFT$(GAS$(GAS),3) FOR OUTPUT AS FILE #GAS
       MARGIN #GAS,100
       PRINT #GAS USING F1$,FR(J),GOM(8,J),GOM(7,J),GOM(6,J), &
               GOM(5,J), GOM(4,J), GOM(3,J), GOM(2,J), GOM(1,J) FOR J=1 TO KK
        CLOSE #GAS
   NEXT GAS
40 END
```

10 REM

NRG.BAS

Computation of fraction of gas energy converted to projectile energy based on Lagrange theory. Function only of Z (or RPP) and N (degrees of freedom).

```
Using gas energy per unit mass, e = N R T / 2
                                            P = RHO R T
                                         Egas = e RHO Volume
        and total gas energy,
        and
                                      volume = A x.
                                         Egas = (N R T / 2) X RhO A x
        Then
                                         Egas = N P A x / 2.
        or
                                       Ebird = MU / 2
        Also
        and from eql of text
                                       Ebird = Egas (1 - Z)
                                Ebird / Egas = 1 - Z
        Therefore,
20
        DEF FNA(Z,N)=(1-Z^2(2/N))
        FORM$="#.#### #.##### #.####"
30
        OPEN "ENERGY.DAT" FOR OUTPUT AS FILE #1
PRINT #1 USING FORMS, Z, FNA(Z, 3), FNA(Z, 5) FOR Z=0 TO .049 STEP .005
35
40
        PRINT #1 USING FORMS, Z, FNA(Z,3), FNA(Z,5) FOR Z=.05 TO 1 STEP .025
50
60
```

DISTRIBUTION

ADMINISTRATOR
DEFENSE TECHNICAL INFORMATION CENTER
ATTN DTIC-DDA (12 COPIES)
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22314

COMMANDER

US ARMY RSCH & STD GP (EUR) ATTN CHIEF, PHYSICS & MATH BRANCH FPO NEW YORK 09510

COMMANDER

US ARMY MATERIEL DEVELOPMENT
& READINESS COMMAND
ATTN DRCDE-S, PROGRAM SUPPORT OFFICE
ATTN DRCQA, DIR FOR QUALITY ASSURANCE
ATTN DRCSF-E, ENGINEERING
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

COMMANDER

US ARMY MISSILE & MUNITIONS CENTER & SCHOOL ATTN ATSK-CTD-F REDSTONE ARSENAL, AL 35809

DIRECTOR

US ARMY MATERIEL SYSTEMS ANALYSIS
ACTIVITY
ATTN DRXSY-MP
ABERDEEN PROVING GROUND, MD 21005

DIRECTOR

US ARMY BALLISTIC RESEARCH LABORATORY
ATTN DRDAR-TSB-S (STINFO)
ATTN RURIK LODER
ATTN JIM EVANS
ATTN DEVELOPMENT & PROOF SERVICES,

ATTN INTERIOR BALLISTICS LABORATORY
ATTN SIGNATURE & PROPAGATION LABORATORY

ATTN DRXBR-BB, V. RICHARD

SAUL TARAGIN

ATTN DRXBR-BB, J. PILCHER

ATTN DRXBR-EB, W. MERMAGEN

ATTN DRXBR-EB, E. BOYER

ATTN STEAP-TL, TECHNICAL LIBRARY DIVISION (2 COPIES)

ATTN E. BOYER, CHIEF,
TRANSONIC RANGE FACILITY
ABERDEEN PROVING GROUND, MD 21005

US ARMY ELECTRONICS TECHNOLOGY & DEVICES LABORATORY ATTN DELET-DD FT MONMOUTH, NJ 07703

HQ USAF/SAMI WASHINGTON, DC 20330 TELEDYNE BROWN ENGINEERING CUMMINGS RESEARCH PARK ATTN DR. MELVIN L. PRICE, MS-44 HUNTSVILLE, AL 35807

ENGINEERING SOCIETIES LIBRARY 345 EAST 47TH STREET ATTN ACQUISITIONS DEPARTMENT NEW YORK, NY 10017

US LIBRARY OF CONGRESS SCIENCE & TECHNOLOGY DIVISION WASHINGTON, DC 20540

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
ATTN LIBRARY
ATTN DR. GALEN B. SCHUBAUER
WASHINGTON, DC 20234

BOULDER LABORTORIES
NATIONAL BUREAU OF STANDARDS
ATTN LIBRARY
BOULDER, CO 90302

NATIONAL ACADEMY OF SCIENCES NATIONAL RESEARCH COUNCIL COMMITTEE ON UNDERSEA WARFARE 2102 CONSTITUTION AVENUE, NW WASHINGTON, DC 20418

NATIONAL AERONAUTICS & SPACE
ADMINISTRATION
LEWIS RESEARCH CENTER
ATTN GEORGE MANDEL, CHIEF, LIBRARY
21000 BROOKPARK ROAD
CLEVELAND, OH 44135

NATIONAL AERONAUTICS & SPACE ADMINISTRATION GODDARD SPACE FLIGHT CENTER ATTN LIBRARY GREENBELT, MD 20771

NATIONAL AERONAUTICS & SPACE
ADMINISTRATION
LANGLEY RESEARCH CENTER
LANGLEY STATION
ATTN LIBRARY, MS 185
ATTN MITCHEL H. BERTRAM, MD 243
ATTN RUSSELL HOPKO, PARD, MS 213
HAMPTON, VA 23365

NATIONAL AERONAUTICS & SPACE
ADMINISTRATION
ATTN DR. H. H. KURWEG, DIRECTOR
OF RESEARCH
600 INDEPENDENCE AVENUE, SW
WASHINGTON, DC 20546

NASA/AMES RESEARCH CENTER ATTN CHARLES DE ROSE, MAIL STOP N237-1 MOFFETT FIELD, CA 94035

OFFICE OF THE UNDERSECRETARY OF DEFENSE FOR RESEARCH & ENGINEERING ATTN TECHNICAL LIBRARY THE PENTAGON WASHINGTON, DC 20301

OFFICE OF THE DEPUTY CHIEF OF STAFF FOR RESEARCH, DEVELOPMENT & ACQUISITION DEPARTMENT OF THE ARMY ATTN DAMA-ARZ-A, DIRECTOR OF ARMY RESEARCH WASHINGTON, DC 20310

DEFENSE RESEARCH ESTABLISHMENT
VALCARTIER
DEFENSE RESEARCH BOARD
ATTN DIRECTOR OF R&D
QUEBEC, CANADA

COMMANDER
EUSTIS DIRECTORATE
US ARMY AIR MOBILITY RESEARCH &
DEVELOPMENT LABORATORY
ATTN DIRECTOR, R&D
FT EUSTIS, VA 23604

ARMY ADVANCED BALLISTICS MISSILE
DEFENSE AGENCY
PO BOX 5475
ATTN TECH DIRECTOR
RIVERSIDE, CA 92507

COMMANDER

US ARMY MOBILITY EQUIPMENT RESEARCH & DEVELOPMENT CENTER ATTN TECHNICAL LIBRARY FT BELVOIR, VA 22060

COMMANDER

US ARMY ARMAMENT RESEARCH & DEVELOPMENT COMMAND
ATTN DRDAR-TS, TECHNICAL SUPPORT DIV
DOVER, NJ 07801

COMMANDER
US ARMY MATERIALS & MECHANICS
RESEARCH CENTER
ATTN DRXMR-PL, TECHNICAL LIBRARY
ATTN DRXMR-T, MECHANICS & ENGINEERING
LABORATORY
ATTN TECHNICAL INFORMATION OFFICE
WATERTOWN, MA 02172

COMMANDER

US ARMY MATERIEL SYSTEMS ANALYSIS
ACTIVITY
ATTN X5 (W3JCAA)
ABERDEEN PROVING GROUND, MD 21005

CHIEF

ARMY RESEARCH OFFICE (DURHAM)
PO BOX 12211
ATTN DRXRO-EG, DIR ENGINEERING DIV
ATTN CRD-AA-IP
RESEARCH TRIANGLE PARK, NC 27709

COMMANDER

YUMA PROVING GROUND
ATTN STEYP-TE, TEST & EVALUATION
DIRECTORATE
YUMA PROVING GROUND, AZ 85364

COMMANDER

US ARMY TANK-AUTOMOTIVE COMMAND
ATTN NICP, DIRECTORATE FOR MATERIEL
MANAGEMENT
ATTN SMOTA-RCS, PHYSICAL SCIENCES
LABORATORY
ATTN SMOTA-RCF, FIRE POWER LABORATORY

ATTN SMOTA-RCF, FIRE POWER LABORATORY WARREN, MI 48090

COMMANDER

US ARMY WEAPONS COMMAND ATTN LIBRARY ROCK ISLAND, IL 61201

COMMANDER ARRADCOM HQ

ATTN SCIENTIFIC & TECHNICAL INFORMATION BRANCH

ATTN W. HADOWANETZ
ATTN R. BUXTON
ATTN S. KOCH
ATTN F. SAXE, BLDG 3359,
LIGHT WEAPONS
ATTN DR-DAR-SCA

COMMANDER

DOVER, NJ 07801

EDGEWOOD ARSENAL
ATTN TECHNICAL LIBRARY
EDGEWOOD ARSENAL, MD 21010

SUPERINTENDENT
NAVAL POSTGRADUATE SCHOOL
ATTN LIBRARY, CODE 2124
MONTEREY, CA 93940

COMMANDER
NAVAL SURFACE WEAPONS CENTER
ATTN GUN SYSTEMS & MUNITIONS DIV
ATTN TECHNICAL LIBRARY
WHITE OAK, MD 20910

DEPARTMENT OF THE NAVY
ORDNANCE SYSTEM COMMAND
ATTN DLI-E, TECHNICAL LIBRARY
WASHINGTON, DC 20360

DIRECTOR

NAVAL RESEARCH LABORATORY
ATTN CODE 2600, TECH INFO DIV
ATTN CODE 2620, TECH LIBRARY
ATTN CODE 2027, LIBRARY
ATTN CODE 2029, (ONRL)
WASHINGTON, DC 20375

COMMANDER

NAVAL WEAPONS CENTER ATTN TECH LIBRARY ATTN CODE 2027, LIBRARY ATTN CODE 406, TECH LIB CHINA LAKE, CA 93555

COMMANDER

US NAVAL SURFACE WEAPONS CENTER
ATTN LEON ANDERSON
ATTN LIBRARY
ATTN CODE KE
ATTN CODE TX
DAHLGREN, VA

DIRECTOR

US NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CA 92152

US NAVAL ACADEMY
ENGINEERING DEPARTMENT
ATTN LIBRARY
ANNAPOLIS, MD 21402

COMMANDER

US NAVAL AIR DEVELOPMENT CENTER ATTN TECH LIBRARY WARMINSTER, PA 18974

COMMANDER

NAVAL UNDERSEA CENTER ATTN DIR A. G. FABULA, CODE 6005 SAN DIEGO, CA 92132

OFFICER-IN-CHARGE
NAVAL UNDERSEA CENTER
3203 E. FOOTHILL BOULEVARD
PASADENA, CA 91107

CHIEF OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
ATTN CODE 463
ATTN CODE 438
ATTN CODE 439
ARLINGTON, VA 22217

COMMANDER

NAVAL AIR SYSTEMS COMMAND DEPARTMENT OF THE NAVY

ATTN AIR-03B ATTN AIR-5203 ATTN AIR-5301 ATTN AIR-5302

WASHINGTON, DC 20361

COMMANDER

NAVAL SEA SYS COMMAND, HQ DEPARTMENT OF THE NAVY ATTN NSEA-03A ATTN NSEA-035B

ATTN NSEA-035B ATTN NSEA-541 ATTN NSEA-0521 ATTN NSEA-0532

2521 JEFFERSON DAVIS HIGHWAY

ARLINGTON, VA 20360

COMMANDING OFFICER
NAVAL CIVIL ENGINEERING LABORATORY
PORT HUENEME, CA 93041

COMMANDER

DAVID W. TAYLOR NAVAL SHIP
RESEARCH & DEVELOPMENT CENTER
ATTN ELIZABETH DEMPSEY, CODE 534
ATTN PAUL GRANVILLE, CODE 581
ATTN G. H. FRANZ
ATTN WILLIAM R. HOOVER
ATTN R. J. GRADY
ATTN D. CIESLOWSKI
ATTN STRUCTURES
BETHESDA, MD 20084

COMMANDING OFFICER
US NAVAL MISSILE CENTER
ATTN TECHNICAL LIBRARY, CODE NO322
POINT MUGU, CA 93041

US NAVAL RESEARCH LABORATORY
ATTN ANDREW E. WILLIAMS CODE 7908
WASHINGTON, DC 20375

AIR FORCE WEAPONS LABORATORY/DYC WLRP ATTN CAPT R. G. HENNING KIRTLAND AIR FORCE BASE, NM 87117

DEPUTY CHIEF OF STAFF
RESEARCH & DEVELOPMENT
HEADQUARTERS, US AIR FORCE
ATTN AFRDQSM
WASHINGTON, DC 20330

AF AERO-PROPULSION LABORATORY WRIGHT-PATTERSON AFB, OH 45433

ARVIN/CALSPAN FIELD SERVICES
VON KARMAN GAS DYNAMICS FACILITY
ARNOLD ENGINEERING DEVELOPMENT CENTER
ATTN HENRY W. BALL
ARNOLD AIR FORCE STATION, TN 37389

AIR FORCE ARMAMENT LABORATORY AFATL/DLDL ATTN GERALD L. WINCHENBACH EGLIN AFB. FL 32542

COMMANDER
ARMAMENT DEVELOPMENT & TEST
CENTER
EGLIN AFB, FL 32542

COMMANDER
AF FLIGHT DYNAMICS LAB
ATTN PTS SURVIVABILITY/VULNERABILITY
BRANCH
WRIGHT-PATTERSON AFB, OH 45433

COMMANDER
ARNOLD ENGINEERING DEVELOPMENT CENTER
ATTN CAPT CARLOS TIRRES, DYR
ATTN DY, DIR TECHNOLOGY
ATTN LIBRARIAN
ARNOLD AIR FORCE STATION, TN 37389

AF OFFICE OF SCIENTIFIC RESEARCH ATTN LIBRARIAN BOLLING AFB, DC 20332

6585TH TEST GROUP
TEST TRACK DIVISION
ATTN D. J. KRUPOVAGE G585TG/TKE
HOLLOMAN AFB, NM 88330

COMMANDER
NATICK LABORATORIES
ATTN DIRECTOR, R&D
NATICK, MA 01762

AAI
PO BOX 6767
MAIL STOP: E 156
ATTN MR. C. CHANDLER
BALTIMORE, MD 21204

ALLEGHANY BALLISTICS LABORATORY HERCULES POWDER CO ATTN CAPT N. J. KLEISS CUMBERLAND, MD 12502

AEROSPACE CORP
PO BOX 95085
ATTN DR. J. S. WHITTIER
ATTN M. J. ADAMS
LOS ANGELES, CA 90045

AVCO-EVERETT RESEARCH LABORATORY ATTN DR. ARTHUR KANTROWITZ 885 REVERE BEACH PARKWAY EVERETT, MA 02149

AVCO SYSTEMS DIVISION ATTN WILLIAM L. MCKAY 201 LOWELL STREET WILMINGTON, MA 01887

AEROPHYSICS COMPANY ATTN GABRIEL D. BOEHLER 3500 CONNECTICUT AVENUE, NW WASHINGTON, DC 20003

BOEING COMPANY RESEARCH & ENGINEERING DIV ATTN LIBRARIAN SEATTLE, WA 98100

BATTELLE MEMORIAL INSTITUTE
ATTN REMOTE AREA CONFLICT
INFORMATION CENTER
505 KING AVENUE
COLUMBUS, OH 43201

BULOVA
PO BOX 189
ATTN S. SUGARMAN
GREEN ACRES ROAD WEST
VALLEY STREAM, NY 11582

BOEING COMPANY
AEROSPACE COMPANY
PO BOX 3707
ATTN 8K-38, RUTH E. PERRENBOOM
SEATTLE, WA 98124

UNIVERSITY OF CALIFORNIA LOS ALAMOS SCIENTIFIC LABORATORY PO BOX 1663 ATTN REPORT LIBRARY LOS ALAMOS, NM 97544

CALIFORNIA INSTITUTE OF TECHNOLOGY
JET PROPULSION LABORATORY
ATTN T. KICENIUK,
HYDRODYNAMICS LABORATORY
ATTN PROF M. S. PLESSET, DIV OF
ENGINEERING
ATTN PROF T. Y. WU
PASADENA, CA 91103

THE CATHOLIC UNIVERSITY OF AMERICA
DEPARTMENT OF SPACE SCIENCE & APPLIED
PHYSICS
ATTN DR. C. C. CHANG
WASHINGTON, DC 20017

CORNELL UNIVERSITY
SCHOOL OF CHEMICAL ENGINEERING
GRUMAN HALL
ATTN E. L. RESLER, JR.
ITHACA, NY 14850

COLORADO STATE UNIVERSITY
ATTN CIVIL ENGINEERING HYDRAULICS
LABORATORY
FT COLLINS, CO 80521

CIVIL ENGINEERING RESEARCH FACILITY UNIVERSITY OF NEW MEXICO PO BOX 188
ALBUQUERQUE, NM 87131

UNIVERSIY OF CALIFORNIA
DEPARTMENT OF NAVAL ARCHITECTURE
ATTN PROF J. V. WEHAUSEN
BERKELEY, CA 94720

COMMISSARIAT A L'ENERGIE ATOMIQUE CENTRE D'ETUDES DE LIMEIL - BP27 ATTN DR. HENRI BERNIER 94190 VILLENEUVE SAINT-GEORGES FRANCE

CALIFORNIA INSTITUTE OF TECHNOLOGY SEISMOLOGICAL LABS 252-21 ATTN WARREN GINN PASADENA, CA 91125

DYNASEN, INC 20 DEAN ARNOLD PLACE ATTN DR. JACQUES CHAREST GOLETA, CA 93017

DEFENSE RESEARCH ESTABLISHMENT VAL CARTIER PO BOX 880 COURCELETTE P.Q. ATTN GEDEON DUROIN CANADA GIV3K6

DIR. DIPL-ING. H. SCHULTE ERP ST. 91 D. BW ATTN DR. J. K. BIELE 4470 MEPPEN FEDERAL REPUBLIC OF WEST GERMANY

UNIVERSITY OF DAYTON RESEARCH INSTITUTE ATTN STEPHAN BLESS 300 COLLEGE PARK DRIVE DAYTON, OH 45469

UNIVERSITY OF DELAWARE
MECHANICAL & AERONAUTICAL
ENGINEERING DEPARTMENT
ATTN DR. JAMES DANBERG
NEWARK, NJ 19711

DIRECTOR

DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
ARCHITECT BLDG
ATTN MATERIALS SCIENCES
ATTN ADVANCED CONCEPTS DIV
ATTN TARGET ACQUISITION & ENGAGEMENT DIV
ATTN WEAPONS TECH & CONCEPTS DIV
1400 WILSON BLVD
ARLINGTON, VA 22209

ERNST-MACH-INSTITUT
DER FRAUNHOFER-GESELLSCHAFT
ECKERSTRASSE 4
D 7800 FREIBURG I. BR.
ATTN DR. ALOIS STILP
FEDERAL REPUBLIC OF WEST GERMANY

EASTMAN KODAK CO ATTN G. MONGEAU 901 ELMGROVE ROAD ROCHESTER, NY 14650

EFFECTS TECHNOLOGY, INC ATTN WILLIAM M. ISBELL 5383 HOLLISTER AVENUE SANTA BARBARA, CA 93111

FRANKLIN INST RESEARCH LABS ATTN TECHNICAL DIRECTOR 20TH & BENJAMIN FRANKLIN PARKWAY PHILADELPHIA, PA 19103

FORSVARETS FORSKNINGSANSTALT
NATIONAL DEFENSE RESEARCH INSTITUTE
LINNEGATON 89, STOCKHOLM
ATTN SVEN NORDSTORM
FMV-F:AP/FOA 276
S-546 01 KARLSBORG SWEDEN
S-104 50 STOCKHOLM
SWEDEN

GENERAL ELECTRIC CO/ARMAMENT SYSTEMS DEPT. LAKESIDE AVENUE ATTN ROBERT WHYTE, RM 1311 BURLINGTON, VT 05402

GM/DRL DELCO ELECTRONICS SBO ATTN DR. F. K. BOUTWELL 6767 HOLLISTER AVENUE GOLETA, CA 93017

GEORGIA INSTITUTE OF TECHNOLOGY ENGINEERING EXPERIMENT STATION ATTN HYDRAULICS LABORATORY 225 NORTH AVENUE, NW ATLANTA, GA 30332

GOODYEAR AEROSPACE CORP ATTN LIBRARIAN AKRON, OH

GENERAL DYNAMICS
POMONA DIVISION
MAIL ZONE 4-53
ATTN D. STARBUCK
1675 WEST MISSION BLVD
POMONA, CA 91766

GENERAL DYNAMICS
ELECTRIC BOAT DIVISION
MARINE TECHNOLOGY CENTER
PO BOX 911
ATTN W. B. BARKLEY
ATTN DR. BLANE R. PARKIN,
MAIL ZONE 6-116
SAN DIEGO, CA 92112

GENERAL ELECTRIC CO
SPACE DIVISION
PO BOX 8555
ATTN LAWRENCE I. CHASEN,
MANAGER/MSC LIBRARIES
ATTN ANTHONY P. COPPA
ATTN R. F. PAPA
PHILADELPHIA, PA 19101

GENERAL ELECTRIC CO
RE-ENTRY & ENVIRONMENTAL SYSTEMS
DIVISION
PO BOX 7722
ATTN W. DASKIN, MANAGER, TECHNOLOGY
ENGINEERING SECTION
ATTN W. W. WILSON, MANAGER MILITARY
OCEAN PROGRAMS
PHILADELPHIA, PA 19101

GENERAL ELECTRIC CO VALLEY FORGE SPACE TECHNOLOGY CENTER ATTN L. MARSHALL ATTN DR. R. F. HOPPMANN KING OF PRUSSIA, PA 19406

GENERAL MOTORS
TECHNICAL CENTER
ATTN LIBRARIAN
WARREN, MI 48090

HYDRONAUTICS, INC
ATTN P. EISENBERG
ATTN M. P. TULIN
PINDELL SCHOOL ROAD
HOWARD COUNTY
LAUREL, MD 20810

HONEYWELL ORDNANCE DIVISION
ATTN E. M. JOHNSON
ATTN P. T. KERSH
ATTN S. SOPSZAK
600 2ND STREET, N
HOPKINS, MN 53343

HEXCEL CORPORATION LOYOLA FEDERAL BLDG ATTN T. EMERSON BEL AIR, MD 21014

INSTITUT FUER LUFT UND RAUMFAHRT TECHNISCHE UNIVERSITAET ATTN DR. E. IGENBERGS 8000 MUENCHEN 2 ARCISSTRASSE 21 FEDERAL REPUBLIC OF GERMANY

IIT RESEARCH INSTITUTE ATTN LIBRARIAN 10 w. 35TH STREET CHICAGO, IL 60616

INSTITUT FRANCO-ALLEMAND

DE RECHERCHES DE SAINT-LOUIS
ATTN M GIRAUD

12, RUE DE L'INDUSTRIE

68301 SAINT-LOUIS
FRANCE

THE UNIVERSITY OF IOWA
THE INSTITUTE OF HYDRAULIC RESEARCH
ATTN HUNTER ROUSE
ATTN LOUIS LANDWEBER
IOWA CITY, IQ 52240

UNIVERSITY OF ILLINOIS
COLLEGE OF ENGINEERING
DEPARTMENT OF THEORETICAL &
APPLIED MECHANICS
ATTN DR. J. M. ROBERTSON
212 TALBOT LABORATORY
URBANA, IL 61801

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
ATTN DR. L. L. CRONVICH
ATTN DOCUMENT LIBRARIAN
ATTN L. B. WECKESSER
8621 GEORGIA AVENUE
SILVER SPRING, MD 20910

JET PROPULSION LABORATORY ATTN LIBRARY, TDS- N.E. DEVERAUX 4800 OAK GROVE DRIVE PASADENA, CA 91103

KAMAN SCIENCES CORP KAMAN NUCLEAR DIVISION PO BOX 7463 ATTN DR. A. P. BRIDGES COLORADO SPRINGS, CO 80901

DEPARTMENT OF MECHANICAL ENGINEERING KYOTO UNIVERSITY ATTN PROF TOSHIRO YAMADA SAKYO-KU, KYOTO 606 JAPAN

LAWRENCE LIVERMORE NATIONAL LABORATORY
PO BOX 808
ATTN CHARLES HONODEL L-368
LIVERMORE, CA 94550

LABORATOIRE DE RECHERCHES BALISTIQUES ET AERODYNAMIQUES ATTN J. DUMAS 27207 VERNON, BP 914 FRANCE

DIRECTOR
LAWRENCE RADIATION LABORATORY
PO BOX 1663
ATTN LIBRARIAN
LOS ALAMOS, NM 87544

LOCKHEED MISSILES & SPACE CO
MISSILE SYSTEMS DIVISION
PO BOX 504
ATTN R. W. KERMEEN, DEPT 50-35,
BLDG 153 F/1
ATTN FRANK CHAPMAN, DEPT 81-90
SUNNYVALE, CA 94086

UNIVERSITY OF MARYLAND
DEPARTMENT OF AEROSPACE ENGINEERING
GLEN L. MARTIN INSTITUTE OF TECHNOLOGY
ATTN PROF JOHN D. ANDERSON, JR.
COLLEGE PARK, MD 20742

UNIVERSITY OF MARYLAND
MECHANICAL ENGINEERING DEPARTMENT
ATTN DR. C. L. SAYRE
ATTN DR. JAMES DALLY
COLLEGE PARK, MD 20742

UNIVERSITY OF MINNESOTA ST. ANTHONY FALLS HYDRAULIC ATTN PROF E. SILBERMAN MISSISSIPPI RIVER AT 3RD AVE WE MINNEAPOLIS, MN 55141 MARTIN MARIETTA CORP AEROSPACE DIV PO BOX 5837 M.D.109 ATTN LIBRARIAN ORLANDO, FL 32805

MOTOROLA INC ATTN G. GARDNER 8201 EAST MCDOWELL RD SCOTTSDALE, AZ 85252

NORTH AMERICAN AVIATION INC SPACE & INFORMATION SYSTEMS DVISION ATTN TECHNICAL INFORMATION CENTER, D/096-722 (AJ01) DOWNEY, CA 90241

STATE UNIVERSITY OF NEW YORK AT BUFFALO DEPARTMENT OF MECHNICAL ENGINEERING FACULTY OF ENGINEERING & APPLIED SCIENCES PARK ENGINEERING BUILDING ATTN J. GORDON HAL BUFFALO, NY 14212

OHIO STATE UNIVERSITY
DEPARTMENT OF AERO-ASTRONAUTICAL
ENGINEERING
ATTN PROF TING YI LI
2036 NEIL AVENUE
COLUMBUS, OH 43210

OCEANICS, INC ATTN DR. PAUL KAPLAN PLAINVIEW LONG ISLAND, NY 11803

DIRECTOR ORDNANCE RESEARCH LABORATORY PENNSYLVANIA STATE UNIVERSITY PO BOX 30 STATE COLLEGE, PA 16801

PHYSICS INTERNATIONAL COMPANY 2700 MERCED STREET SAN LEANDRO, CA 94577

PRINS MAURITS LABORATORY TNO PO BOX 45 ATTN DR. W. J. KOLKERT 2280 AA RIJSWIJK THE NETHERLANDS

ROYAL ARMAMENT RESEARCH &
DEVELOPMENT ESTABLISHMENT
BALLISTICS BRANCH R3 1
ATTN P. W. W. FULLER
FT HALSTEAD, SEVENOAKS
KENT, ENGLAND

SCIENCE APPLICATIONS, INC ATTN GEORGE BURGHART 201 WEST DYER ROAD UNIT B SANTA ANA, CA 92707

SANDIA LABORATORIES
PO BOX 5800
ATTN S. FLUENT
ATTN TECHNICAL LIBRARY
ATTN W. V. HEREFORD, DIV 7215
ATTN R. C. MAYDEW, AERO-THERMODYNAMICS
DEPT

ATTN DIVISION 5534 LALIT C. CHHABILDAS ALBUQUERQUE, NM 87185

SANDIA LABORATORIES
LIVERMORE LABORATORY
PO BOX 969
ATTN TECHNICAL REFERENCE LIBRARY
LIVERMORE, CA 04550

SOUTHWEST RESEARCH INSTITUTE PO DRAWER 28510 ATTN LIBRARY ATTN ALEX B. WENZEL SAN ANTONIO, TX 78284

STANFORD UNIVERSITY
ATTN PROF E. Y. HSU
ATTN DR. DANIEL BERSHADER
DEPT OF AERONAUTICAL &
ASTRONAUTICAL
STANFORD, CA 94305

STEVENS INSTITUTE OF TECHNOLOGY DAVIDSON LABORATORY ATTN DR. ALBERT STRUMPF ATTN ANTHONY SURAEZ HOBOKEN, NJ 07030

SYSTEMS, SCIENCE & SOFTWARE PO BOX 1620 ATTN LIBRARIAN LA JOLLA, CA 92037

TOKYO INSTITUTE OF TECHNOLOGY RESEARCH LAB OF ENGR MATERIALS ATTN DR. A. SAWAOKA 4259 NAGATSUTA, MIDORI YOKOHAMA 227, JAPAN

TERA TEK, INC
UNIVERSITY OF UTAH RESEARCH PARK
ATTN SIDNEY GREEN
420 WAKARA WAY
SALT LAKE CITY, UT 84108

THERM ADVANCED RESEARCH, INC 100 HUDSON CIRCLE ITHACA, NY 14851 UNITED AIRCRAFT CORP RESEARCH LABORATORY ATTN J. J. CHARETTE ATTN F. S. OWEN EAST HARTFORD, CT 06108

UNIVERSITY OF UTAH
COLLEGE OF ENGINEERING
ATTN PROF MAX L. WILLIAMS, DEAN
SALT LAKE CITY, UT 84112

WASHINGTON STATE UNIVERSITY
R. L. ALBROOK HYDRAULIC LABORATORY
DIVISION OF INDUSTRIAL RESEARCH
ATTN CHAIRMAN, MECHANICAL
ENGINEERING DEPT
PULLMAN, WA 91634

WORCESTER POLYTECHNIC INSTITUTE ALDEN RESEARCH LABORATORY ATTN PROF L. J. HOOPER ATTN L. C. NEALE WORCESTER, MA 01609

UNIVERSITY OF WYOMING
COLLEGE OF ENGINEERING
UNIVERSITY STATION, BOX 3295
ATTN ENGINEERING LIBRARY
ATTN PROF JAMES D. MATHENY
HEAD DEPT OF MECHANICAL
ENGINEERING
LARAMIE, WY 82070

UNIVERISTY OF WEST FLORIDA FACULTY OF AERONAUTICAL SYSTEMS ATTN DR. RICHARD FLEDDERMAN PENSACOLA, FL 32504

US ARMY ELECTRONICS RESEARCH &
DEVELOPMENT COMMAND
ATTN TECHNICAL DIRECTOR, DRDEL-CT

HARRY DIAMOND LABORATORIES ATTN CO/TD/TSO/DIVISION DIRECTORS ATTN RECORD COPY, 81200 ATTN HDL LIBRARY, 81100 (2 COPIES) ATTN HDL LIBRARY, 81100 (WOODBRIDGE) ATTN TECHNICAL REPORTS BRANCH, 81300 ATTN CHAIRMAN, EDITORIAL COMMITTEE ATTN LEGAL OFFICE, 97000 ATTN MORRISON, R. E., 13500 ATTN NELSON, F., 48500 ATTN POLLIN, I., 48500 ATTN MARY, D., 48500 ATTN MCINTOSH, W., 48500 ATTN MARCUS, I., 48000 ATTN FURLANI, J., 48100 ATTN BEARD, J., 34200 ATTN CURCHACK, H. D., 48500 (25 COPIES)